3,461
Views
5
CrossRef citations to date
0
Altmetric
Review

Utilization of biomaterials to develop the biodegradable food packaging

, , , , , , , , ORCID Icon, , , , ORCID Icon, , & ORCID Icon show all
Pages 1122-1139 | Received 09 Dec 2022, Accepted 23 Feb 2023, Published online: 28 Apr 2023

References

  • Kunwar, B.; Cheng, H. N.; Chandrashekaran, S. R.; Sharma, B. K. Plastics to Fuel: A Review. Renew. Sust. Energ. Rev. 2016, 54, 421–428. DOI: 10.1016/j.rser.2015.10.015.
  • Dwivedi, P.; Mishra, P. K.; Mondal, M. K.; Srivastava, N. Non-Biodegradable Polymeric Waste Pyrolysis for Energy Recovery. Heliyon. 2019, 5(8), e02198. DOI: 10.1016/j.heliyon.2019.e02198.
  • Zhang, W.; Jiang, W. Antioxidant and Antibacterial Chitosan Film with Tea Polyphenols-Mediated Green Synthesis Silver Nanoparticle via a Novel One-Pot Method. Int. J. Biol. Macromol. 2020, 155, 1252–1261. DOI: 10.1016/j.ijbiomac.2019.11.093.
  • Zhang, W.; Li, X.; Jiang, W. Development of Antioxidant Chitosan Film with Banana Peels Extract and Its Application as Coating in Maintaining the Storage Quality of Apple. Int. J. Biol. Macromol. 2020, 154, 1205–1214. DOI: 10.1016/j.ijbiomac.2019.10.275.
  • Hassan, B.; Chatha, S. A. S.; Hussain, A. I.; Zia, K. M.; Akhtar, N. Recent Advances on Polysaccharides, Lipids and Protein Based Edible Films and Coatings: A Review. Int. J. Biol. Macromol. 2018, 109, 1095–1107. DOI: 10.1016/j.ijbiomac.2017.11.097.
  • Homez-Jara, A.; Daza, L. D.; Aguirre, D. M.; Muñoz, J. A.; Solanilla, J. F.; Váquiro, H. A. Characterization of Chitosan Edible Films Obtained with Various Polymer Concentrations and Drying Temperatures. Int. J. Biol. Macromol. 2018, 113, 1233–1240. DOI: 10.1016/j.ijbiomac.2018.03.057.
  • Bahrami, A.; Mokarram, R. R.; Khiabani, M. S.; Ghanbarzadeh, B.; Salehi, R. Physico-Mechanical and Antimicrobial Properties of Tragacanth/Hydroxypropyl Methylcellulose/Beeswax Edible Films Reinforced with Silver Anoparticles. Int. J. Biol. Macromol. 2019, 129, 1103–1112. DOI: 10.1016/j.ijbiomac.2018.09.045.
  • Tian, H.; Guo, G.; Fu, X.; Yao, Y.; Yuan, L.; Xiang, A. Fabrication, Properties and Applications of Soy-Protein-Based Materials: A Review. Int. J. Biol. Macromol. 2018, 120, 475–490. DOI: 10.1016/j.ijbiomac.2018.08.110.
  • Haghighi, H.; Licciardello, F.; Fava, P.; Siesler, H. W.; Pulvirenti, A. Recent Advances on Chitosan-Based Films for Sustainable Food Packaging Applications. Food Packag. Shelf Life. 2020, 26, 100551–100571. DOI: 10.1016/j.fpsl.2020.100551.
  • Gheribi, R.; Gharbi, M. A.; El Ouni, M.; Khwaldia, K. Enhancement of the Physical, Mechanical and Thermal Properties of Cactus Mucilage Films by Blending with Polyvinyl Alcohol. Food Packag. Shelf Life. 2019, 22, 100386. DOI: 10.1016/j.fpsl.2019.100386.
  • Du, W. X.; Olsen, C. W.; Avena‐bustillos, R. J.; McHugh, T. H.; Levin, C. E.; Mandrell, R.; Friedman, M. Antibacterial Effects of Allspice, Garlic, and Oregano Essential Oils in Tomato Films Determined by Overlay and Vapor‐phase Methods. J. Food Sci. 2009, 74(7), 390–397. DOI: 10.1111/j.1750-3841.2009.01289.x.
  • Robledo, N.; Vera, P.; López, L.; Yazdani-Pedram, M.; Tapia, C.; Abugoch, L. Thymolnanoemulsions Incorporated in Quinoa Protein/Chitosan Edible Films; Antifungal Effect in Cherry Tomatoes. Food Chem. 2018, 246, 211–219. DOI: 10.1016/j.foodchem.2017.11.032.
  • García-Ramón, J. A.; Carmona-García, R.; Valera-Zaragoza, M.; Aparicio-Saguilán, A.; Bello-Pérez, L. A.; Aguirre-Cruz, A.; Alvarez-Ramirez, J. Morphological, Barrier, and Mechanical Properties of Banana Starch Films Reinforced with Cellulose Nanoparticles from Plantain Rachis. Int. J. Biol. Macromol. 2021, 187, 35–42. DOI: 10.1016/j.ijbiomac.2021.07.112.
  • Kadzińska, J.; Bryś, J.; Ostrowska-Ligęza, E.; Estéve, M.; Janowicz, M. Influence of Vegetable Oils Addition on the Selected Physical Properties of Apple–Sodium Alginate Edible Films. Polym. Bullet. 2020, 77(2), 883–900. DOI: 10.1007/s00289-019-02777-0.
  • Maan, A. A.; Ahmed, Z. F. R.; Khan, M. K. I.; Riaz, A.; Nazir, A. Aloe Vera Gel, an Excellent Base Material for Edible Films and Coatings. Trends Food Sci. Technol. 2021, 116, 329–341. DOI: 10.1016/j.tifs.2021.07.035.
  • Suhag, R.; Kumar, N.; Petkoska, A. T.; Upadhyay, A. Film Formation and Deposition Methods of Edible Coating on Food Products: A Review. Food. Res. Int. 2020, 136, 109582. DOI: 10.1016/j.foodres.2020.109582.
  • Aguirre-Joya, J. A.; De Leon-Zapata, M. A.; Alvarez-Perez, O. B.; Torres-León, C.; Nieto-Oropeza, D. E.; Ventura-Sobrevilla, J. M.; Aguilar, C. N. Basic and Applied Concepts of Edible Packaging for Foods. In Food Packaging and Preservation. Academic Press. 2018, 1–6. DOI: 10.1016/B978-0-12-811516-9.00001-4.
  • Murrieta-Martínez, C.; Soto-Valdez, H.; Pacheco-Aguilar, R.; Torres-Arreola, W.; Rodríguez-Felix, F.; Ramírez-Wong, B.; AndMárquez-Ríos, E.; Santos-Sauceda, I.; Olibarría-Rodríguez, G.; Márquez-Ríos, E. Effect of Different Polyalcohols as Plasticizers on the Functional Properties of Squid Protein Film (DosidicusGigas). Coatings. 2019, 9(2), 77–89. DOI: 10.3390/coatings9020077.
  • Sharma, P.; Shehin, V. P.; Kaur, N.; Vyas, P. Application of Edible Coatings on Fresh and Minimally Processed Vegetables: A Review. Int. J. Veg. Sci. 2019, 25(3), 295–314. DOI: 10.1080/19315260.2018.1510863.
  • Jeevahan, J. J.; Chandrasekaran, M.; Venkatesan, S. P.; Sriram, V.; Joseph, G. B.; Mageshwaran, G.; Durairaj, R. B. Scaling Up Difficulties and Commercial Aspects of Edible Films for Food Packaging: A Review. Trends Food Sci. Technol. 2020, 100, 210–222. DOI: 10.1016/j.tifs.2020.04.014.
  • Zhang, S.; Gu, W. C.; Cheng, Z. Y.; Li, Y.; Gu, W. J. Development of Edible Packaging Materials.In Advanced Materials Research. Trans. Tech. Publications Ltd. 2014, 904, 189–191. DOI: https://doi.org/10.4028/www.scientific.net/AMR.904.189 .
  • Martău, G. A.; Mihai, M.; Vodnar, D. C. The Use of Chitosan, Alginate, and Pectin in the Biomedical and Food Sector—Biocompatibility, Bioadhesiveness, and Biodegradability. Polymers. 2019, 11(11), 1837–1865. DOI: 10.3390/polym11111837.
  • Barcelos, M. C.; Vespermann, K. A.; Pelissari, F. M.; Molina, G. Current Status of Biotechnological Production and Applications of Microbial Exopolysaccharides. Crit. Rev. Food Sci. Nutr. 2020, 60(9), 1475–1495. DOI: 10.1080/10408398.2019.1575791.
  • Saklani, P.; Das, S. K.; Singh, S. M.; Singh, S. M. A Review of Edible Packaging for Foods. Int. J. Curr. Microbiol.App. Sci. 2019, 8(7), 2885-5. DOI: 10.20546/ijcmas.2019.807.359.
  • Regubalan, B.; Pandit, P.; Maiti, S.; Nadathur, G. T.; Mallick, A. Potential bio-based edible films, foams, and hydrogels for food packaging. In Bio-based Materials for Food Packaging. Springer, 2018, 105–123
  • Ramos, Ó. L.; Pereira, R. N.; Cerqueira, M. A.; Martins, J. R.; Teixeira, J. A.; Malcata, F. X.; Vicente, A. A. Bio-Based Nanocomposites for Food Packaging and Their Effect in Food Quality and Safety. In Food Packaging and Preservation; Academic Press: 2018; pp. 271–306. doi:10.1016/B978-0-12-811516-9.00008-7
  • Jeevahan, J.; Chandrasekaran, M.; Durairaj, R.; Mageshwaran, G.; Joseph, G. B. A Brief Review on Edible Food Packing Materials. J. Global Eng. Prob. Solut. 2017, 1(1), 9–19.
  • Jeevahan, J.; Chandrasekaran, M. Nanoedible Films for Food Packaging: A Review. J. Mater. Sci. 2019, 54(19), 12290–12318. DOI: 10.1007/s10853-019-03742-y.
  • Freitas, F.; Torres, C. A.; Reis, M. A. Engineering Aspects of Microbial Exopolysaccharide Production. Bioresources Technol. 2017, 245, 1674–1683. DOI: 10.1016/j.biortech.2017.05.092.
  • Saadat, Y. R.; Khosroushahi, A. Y.; Gargari, B. P. A Comprehensive Review of Anticancer, Immunomodulatory and Health Beneficial Effects of the Lactic Acid Bacteria Exopolysaccharides. Carbohydr. Polym. 2019, 217, 79–89. DOI: 10.1016/j.carbpol.2019.04.025.
  • Zikmanis, P.; Juhņeviča-Radenkova, K.; Radenkovs, V.; Segliņa, D.; Krasnova, I.; Kolesovs, S.; Semjonovs, P.; Šilaks, A.; Semjonovs, P. Microbial Polymers in Edible Films and Coatings of Garden Berry and Grape: Current and Prospective Use. Food Bioprocess. Technol. 2021, 14(8), 1432–1445. DOI: 10.1007/s11947-021-02666-3.
  • Alizadeh-Sani, M.; Ehsani, A.; Moghaddas Kia, E.; Khezerlou, A. Microbial Gums: Introducing a Novel Functional Component of Edible Coatings and Packaging. Appl. Microbiol. Biotechnol. 2019, 103(17), 6853–6866. DOI: 10.1007/s00253-019-09966-x.
  • Basumatary, K.; Daimary, P.; Das, S. K.; Thapa, M.; Singh, M.; Mukherjee, A.; Kumar, S. Lagerstroemia Speciosa Fruit-Mediated Synthesis of Silver Nanoparticles and Its Application as Filler in Agar Based Nanocomposite Films for Antimicrobial Food Packaging Food Packag. Shelf Life. 2018, 17, 99–106. DOI: 10.1016/j.fpsl.2018.06.003.
  • Mantovan, J.; Bersaneti, G. T.; Faria-Tischer, P. C.; Celligoi, M. A. P. C.; Mali, S. Use of Microbial Levan in Edible Films Based on Cassava Starch. Food Packag. Shelf Life. 2018, 18, 31–36. DOI: 10.1016/j.fpsl.2018.08.003.
  • Sagnelli, D.; Kirkensgaard, J. J.; Giosafatto, C. V. L.; Ogrodowicz, N.; Kruczała, K.; Mikkelsen, M. S.; Blennow, A.; Lourdin, D.; Mortensen, K.; Blennow, A. All-Natural Bio-Plastics Using Starch-Betaglucan Composites. Carbohydr. Polym. 2017, 172, 237–245. DOI: 10.1016/j.carbpol.2017.05.043.
  • Piermaria, J.; Diosma, G.; Aquino, C.; Garrote, G.; Abraham, A. Edible Kefiran Films as Vehicle for Probiotic Microorganisms. IFSET. 2015, 32, 193–199. DOI: 10.1016/j.ifset.2015.09.009.
  • Chiabrando, V.: Giacalone, G. Effects of Alginate Edible Coating on Quality and Antioxidant Properties in Sweet Cherry During Postharvest Storage. Ital J. Food Saf. 2015, 27(2), 173–180. DOI: 10.14674/1120-1770/ijfs.v184.
  • Anis, A.; Pal, K.; Al-Zahrani, S. M. Essential Oil-Containing Polysaccharide-Based Edible Films and Coatings for Food Security Applications. Polymers. 2021, 13(4), 575–607. DOI: 10.3390/polym13040575.
  • Li, S.; Ma, Y.; Ji, T.; Sameen, D. E.; Ahmed, S.; Qin, W.; Liu, Y.; Li, S.; Liu, Y. Cassava Starch/Carboxymethylcellulose Edible Films Embedded with Lactic Acid Bacteria to Extend the Shelf Life of Banana. Carbohydr. Polym. 2020, 248, 116805–116817. DOI: 10.1016/j.carbpol.2020.116805.
  • Davidović, S.; Miljković, M.; Tomić, M.; Gordić, M.; Nešić, A.; Dimitrijević, S. Response Surface Methodology for Optimisation of Edible Coatings Based on Dextran from Leuconostoc mesenteroides T3. Carbhydr. Polym. 2018, 184, 207–213. DOI: 10.1016/j.carbpol.2017.12.061.
  • Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of Edible Films and Coatings from Alginates and Carrageenans. Carbohydr.Polym. 2016, 137, 360–374. DOI: 10.1016/j.carbpol.2015.10.074.
  • Puscaselu, R.; Gutt, G.; Amariei, S. Biopolymer-Based Films Enriched with Stevia Rebaudiana Used for the Development of Edible and Soluble Packaging. Coatings. 2019, 9(6), 360–373. DOI: 10.3390/coatings9060360.
  • Hasheminya, S. M.; Mokarram, R. R.; Ghanbarzadeh, B.; Hamishekar, H.; Kafil, H. S.; Dehghannya, J. Development and Characterization of Biocomposite Films Made from Kefiran, Carboxymethyl Cellulose and Satureja Khuzestanica Essential Oil. Food Chem. 2019, 289, 443–452. DOI: 10.1016/j.foodchem.2019.03.076.
  • Ahmed, Z.; Wang, Y.; Anjum, N.; Ahmad, H.; Ahmad, A.; Raza, M. Characterization of New Exopolysaccharides Produced by Coculturing of L. Kefiranofaciens with Yoghurt Strains. Int. J. Biol. Macromol. 2013, 59, 377–383. DOI: 10.1016/j.ijbiomac.2013.04.075.
  • Vijayendra, S. V. N.; Shamala, T. R. Film Forming Microbial Biopolymers for Commercial Applications—A Review. Crit. Rev. Biotechnol. 2014, 34(4), 338–357. DOI: 10.3109/07388551.2013.798254.
  • Sgorla, D.; Almeida, A.; Azevedo, C.; Cavalcanti, B.; Sarmento, O. A.; Cavalcanti, O. A. Development and Characterization of Crosslinked Hyaluronic Acid Polymeric Films for Use in Coating Processes. Int. J. Pharm. 2016, 511(1), 380–389. DOI: 10.1016/j.ijpharm.2016.07.033.
  • Donot, F.; Fontana, A.; Baccou, J. C.; Schorr-Galindo, S. Microbial Exopolysaccharides: Main Examples of Synthesis, Excretion, Genetics and Extraction. Carbohydr. Polym. 2012, 87(2), 951–962. DOI: 10.1016/j.carbpol.2011.08.083.
  • Chawla, R.; Sivakumar, S.; Kaur, H. Antimicrobial Edible Films in Food Packaging: Current Scenario and Recent Nanotechnological Advancements-A Review. Carbohydr. Polym. 2021, 2, 100024. DOI: 10.1016/j.carpta.2020.100024.
  • Kumari, N.; Bangar, S. P.; Petrů, M.; Ilyas, R. A.; Singh, A.; Kumar, P. Development and Characterization of Fenugreek Protein-Based Edible Film. Foods. 2021, 10(9), 1976. DOI: 10.3390/foods10091976.
  • García, A.; Pérez, L. M.; Piccirilli, G. N.; Verdini, R. A. Evaluation of Antioxidant, Antibacterial and Physicochemical Properties of Whey Protein-Based Edible Films Incorporated with Different Soy Sauces. LWT. 2020, 117, 108587. DOI: 10.1016/j.lwt.2019.108587.
  • Malathi, A. N.; Santhosh, K. S.; Nidoni, U. Recent Trends of Biodegradable Polymer: Biodegradable Films for Food Packaging and Application of Nanotechnology in Biodegradable Food Packaging. CTTS. 2014, 3(2), 73–79.
  • Sáez-Orviz, S.; Marcet, I.; Rendueles, M.; Díaz, M. Bioactive Packaging Based on Delipidated Egg Yolk Protein Edible Films with Lactobionic Acid and Lactobacillus Plantarum CECT 9567: Characterization and Use as Coating in a Food Model. Food Hydrocoll. 2021, 119, 106849–106859. DOI: 10.1016/j.foodhyd.2021.106849.
  • Zubeldía, F.; Ansorena, M. R.; Marcovich, N. E. Wheat Gluten Films Obtained by Compression Molding. Polym. Test. 2015, 43, 68–77. DOI: 10.1016/j.polymertesting.2015.02.001.
  • Sharma, N.; Khatkar, B. S.; Kaushik, R.; Sharma, P.; Sharma, R. Isolation and Development of Wheat Based Gluten Edible Film and Its Physicochemical Properties. Int. Food Res. J. 2017, 24(1), 94–101.
  • Chiou, B. S.; Cao, T.; Bilbao-Sainz, C.; Vega-Galvez, A.; Glenn, G.; Orts, W. Properties of Gluten Foams Containing Different Additives. Ind. Crops Prod. 2020, 152, 112511–112520. DOI: 10.1016/j.indcrop.2020.112511.
  • Marashi, S. M. H.; Hashemi, M.; Berizi, E.; Raeisi, M.; Noori, S. M. A. Elaboration of Whey Protein-Based Films in Food Products: Emphasis on the Addition of Natural Edible Bio-Nanocomposites with Antioxidant and Antimicrobial Activity. JJNP. 2022, 17(2). DOI: 10.5812/jjnpp.117046.
  • Bahram, S.; Rezaei, M.; Soltani, M.; Kamali, A.; Ojagh, S. M.; Abdollahi, M. Whey Protein Concentrate Edible Film Activated with Cinnamon Essential Oil. J. Food Process Preserv. 2014, 38(3), 1251–1258. DOI: 10.1111/jfpp.12086.
  • Çakmak, H.; Özselek, Y.; Turan, O. Y.; Fıratlıgil, E.; Karbancioğlu-Güler, F. Whey Protein Isolate Edible Films Incorporated with Essential Oils: Antimicrobial Activity and Barrier Properties. Polym. Degrad. Stab. 2020, 179, 1–11. DOI: 10.1016/j.polymdegradstab.2020.109285.
  • Marquez, G. R.; Di Pierro, P.; Mariniello, L.; Esposito, M.; Giosafatto, C. V.; Porta, R. Fresh-Cut Fruit and Vegetable Coatings by Transglutaminase-Crosslinked Whey Protein/Pectin Edible Films. LWT. 2017, 75, 124–130. DOI: 10.1016/j.lwt.2016.08.017.
  • Otoni, C. G.; Avena-Bustillos, R. J.; Olsen, C. W.; Bilbao-Sáinz, C.; McHugh, T. H. Mechanical and Water Barrier Properties of Isolated Soy Protein Composite Edible Films as Affected by Carvacrol and Cinnamaldehyde Micro and Nanoemulsions. Food Hydrocoll. 2016, 57, 72–79. DOI: 10.1016/j.foodhyd.2016.01.012.
  • Acquah, C.; Zhang, Y.; Dubé, M. A.; Udenigwe, C. C. Formation and Characterization of Protein-Based Films from Yellow Pea (Pisum sativum) Protein Isolate and Concentrate for Edible Applications. CRFS. 2020, 2, 61–69. DOI: 10.1016/j.crfs.2019.11.008.
  • Umaraw, P.; Verma, A. K. Comprehensive Review on Application of Edible Film on Meat and Meat Products: An Eco-Friendly Approach. Crit. Rev. Food Sci. Nutr. CRIT REV FOOD SCI. 2017, 57(6), 1270–1279. DOI: 10.1080/10408398.2014.986563.
  • Zhang, Y.; Liu, Q.; Rempel, C. Processing and Characteristics of Canola Protein-Based Biodegradable Packaging. Crit. Rev. Food Sci. Nutr. 2018, 58(3), 475–485. DOI: 10.1080/10408398.2016.1193463.
  • Shitu, A.; Zhang, Y.; Danhassan, U. A.; Li, H.; Tadda, M. A.; Ye, Z.; Zhu, S. Synergistic Effect of Chitosan-Based Sludge Aggregates CS@ NGS Inoculum Accelerated the Start-Up of Biofilm Reactor Treating Aquaculture Effluent: Insights into Performance, Microbial Characteristics, and Functional Genes. Chemosphere. 2022, 303, 135097. DOI: https://doi.org/10.1016/j.chemosphere.2022.135097.
  • Wu, Z.; Li, Y.; Tang, J.; Lin, D.; Qin, W.; Loy, D. A.; Li, S.; Chen, H.; Li, S. Ultrasound-Assisted Preparation of Chitosan/nano-Silica Aerogel/Tea Polyphenol Biodegradable Films: Physical and Functional Properties. Ultrason. Sonochem. 2022, 87, 106052. DOI: 10.1016/j.ultsonch.2022.106052.
  • Lionetto, F.; Esposito Corcione, C. Recent Applications of Biopolymers Derived from Fish Industry Waste in Food Packaging. Polymers. 2021, 13(14), 2337. DOI: 10.3390/polym13142337.
  • Rezaei, F. S.; Sharifianjazi, F.; Esmaeilkhanian, A.; Salehi, E. Chitosan Films and Scaffolds for Regenerative Medicine Applications: A Review. Carbohydr. Polym. 2021, 273, 118631. DOI: 10.1016/j.carbpol.2021.118631.
  • El-Gendi, H.; Saleh, A. K.; Badierah, R.; Redwan, E. M.; El-Maradny, Y. A.; El-Fakharany, E. M. A Comprehensive Insight into Fungal Enzymes: Structure, Classification, and Their Role in Mankind’s Challenges. J. Fungi. 2021, 8(1), 23. DOI: 10.3390/jof8010023.
  • Koc, B.; Akyuz, L.; Cakmak, Y. S.; Sargin, I.; Salaberria, A. M.; Labidi, J.; Kaya, M.; Cekic, F. O.; Akata, I.; Kaya, M. Production and Characterization of Chitosan-Fungal Extract Films. Food Biosci. 2020, 35, 100545–100554. DOI: 10.1016/j.fbio.2020.100545.
  • Alsaggaf, M. S.; Moussa, S. H.; Tayel, A. A. Application of Fungal Chitosan Incorporated with Pomegranate Peel Extract as Edible Coating for Microbiological, Chemical and Sensorial Quality Enhancement of Nile Tilapia Fillets. Int. J. Biol. Macromol. 2017, 99, 499–505. DOI: 10.1016/j.ijbiomac.2017.03.017.
  • Celen, O.: Kocer, H. B. Spinnability and Characterization of Poly (D‐lactic Acid) Blended Poly (L‐lactic Acid) Filament Yarns. J. Appl. Polym. Sci. 2022, 139(15), 51916. DOI: 10.1002/app.51916.
  • Fitzgerald, R.; Bass, L. M.; Goldberg, D. J.; Graivier, M. H.; Lorenc, Z. P. Physiochemical Characteristics of Poly-L-Lactic Acid (PLLA). Aesthet. Surg. J. 2018, 38(suppl_1), S13–17. DOI: 10.1093/asj/sjy012.
  • Sadyt, S.; Błaszczyk, A.; Kozak, W.; Boryło, P.; Szindler, M. Quality Assessment of Innovative Chitosan-Based Biopolymers for Edible Food Packaging Applications. Food Pack. Shelf Life. 2021, 30, 100756–100764. DOI: 10.1016/j.fpsl.2021.100756.
  • Bonilla, J.; Sobral, P. J. Gelatin‐chitosan Edible Film Activated with Boldo Extract for Improving Microbiological and Antioxidant Stability of Sliced Prato Cheese. Int. J. Food Sci. Technol. 2019, 54(5), 1617–1624. DOI: 10.1111/ijfs.14032.
  • Razavi, R.; Tajik, H.; Moradi, M.; Molaei, R.; Ezati, P. Antimicrobial, Microscopic and Spectroscopic Properties of Cellulose Paper Coated with Chitosan Sol-Gel Solution Formulated by Epsilon-Poly-L-Lysine and Its Application in Active Food Packaging. Carbohydr. Res. 2020, 489, 107912–107921. DOI: 10.1016/j.carres.2020.107912.
  • Zhou, W.; He, Y.; Liu, F.; Liao, L.; Huang, X.; Li, R.; Li, J.; Zhou, L.; Zou, L.; Liu, Y., et al. Carboxymethyl Chitosan-Pullulan Edible Films Enriched with Galangal Essential Oil: Characterization and Application in Mango Preservation. Carbohydr. Polym. 2021, 256, 117579. DOI: 10.1016/j.carbpol.2020.117579.
  • Zhao, L.; Liu, Y.; Zhao, L.; Wang, Y. Anthocyanin-Based Ph-Sensitive Smart Packaging Films for Monitoring Food Freshness. J. Agric. Res. 2022, 9, 100340. DOI: 10.1016/j.jafr.2022.100340.
  • Ambaye, T. G.; Vaccari, M.; Prasad, S.; van Hullebusch, E. D.; Rtimi, S. Preparation and Applications of Chitosan and Cellulose Composite Materials. J. Environ. Manage. 2022, 301, 113850. DOI: 10.1016/j.jenvman.2021.113850.
  • Ebrahimzadeh, S.; Bari, M. R.; Hamishehkar, H.; Kafil, H. S.; Lim, L. T. Essential Oils-Loaded Electrospun Chitosan-Poly (Vinyl Alcohol) Nonwovens Laminated on Chitosan Film as Bilayer Bioactive Edible Films. LWT. 2021, 144, 111217. DOI: 10.1016/j.lwt.2021.111217.
  • Settier-Ramírez, L.; López-Carballo, G.; Gavara, R.; Hernández-Muñoz, P. Broadening the Antimicrobial Spectrum of Nisin-Producing Lactococcus lactis Subsp. Lactis to Gram-Negative Bacteria by Means of Active Packaging. Int. J. Food Microbiol. 2021, 339, 109007. DOI: 10.1016/j.ijfoodmicro.2020.109007.
  • Chopra, M.; Kaur, P.; Bernela, M.; Thakur, R. Surfactant Assisted Nisin Loaded Chitosan-Carageenannanocapsule Synthesis for Controlling Food Pathogens. Food Control. 2014, 37, 158–164. DOI: 10.1016/j.foodcont.2013.09.024.
  • Maresca, D.; Mauriello, G. Development of Antimicrobial Cellulose Nanofiber-Based Films Activated with Nisin for Food Packaging Applications. Foods. 2022, 11(19), 3051. DOI: 10.3390/foods11193051.
  • Lan, W.; Zhang, R.; Ji, T.; Sameen, D. E.; Ahmed, S.; Qin, W.; Liu, Y.; He, L.; Liu, Y. Improving Nisin Production by Encapsulated Lactococcus lactis with Starch/Carboxymethyl Cellulose Edible Films. Carbohydr. Polym. 2021, 251, 117062. DOI: 10.1016/j.carbpol.2020.117062.
  • Duran, M.; Aday, M. S.; Zorba, N. N. D.; Temizkan, R.; Büyükcan, M. B.; Caner, C. Potential of Antimicrobial Active Packaging ‘Containing Natamycin, Nisin, Pomegranate and Grape Seed Extract in Chitosan Coating’to Extend Shelf Life of Fresh Strawberry. Food Bioprod. Process. 2016, 98, 354–363. DOI: 10.1016/j.fbp.2016.01.007.
  • Wang, H.; Guo, L.; Liu, L.; Han, B.; Niu, X. Composite Chitosan Films Prepared Using Nisin and Perilla Frutescense Essential Oil and Their Use to Extend Strawberry Shelf Life. Food Biosci. 2021, 41, 101037. DOI: 10.1016/j.fbio.2021.101037.
  • Resa, C. P. O.; Gerschenson, L. N.; Jagus, R. J. Natamycin and Nisin Supported on Starch Edible Films for Controlling Mixed Culture Growth on Model Systems and Port Salut Cheese. Food Control. 2014, 44, 146–151. DOI: 10.1016/j.foodcont.2014.03.054.
  • Divsalar, E.; Tajik, H.; Moradi, M.; Forough, M.; Lotfi, M.; Kuswandi, B. Characterization of Cellulosic Paper Coated with Chitosan-Zinc Oxide Nanocomposite Containing Nisin and Its Application in Packaging of UF Cheese. Int. J. Biol. Macromol. 2018, 109, 1311–1318. DOI: 10.1016/j.ijbiomac.2017.11.145.
  • Malhotra, B.; Keshwani, A.; Kharkwal, H. Antimicrobial Food Packaging: Potential and Pitfalls. Front. Microbiol. 2015, 6, 611. DOI: 10.3389/fmicb.2015.00611.
  • Pranoto, Y.; Rakshit, S. K.; Salokhe, V. M. Enhancing Antimicrobial Activity of Chitosan Films by Incorporating Garlic Oil, Potassium Sorbate and Nisin. LWT-JFST. 2005, 38(8), 859–865. DOI: 10.1016/j.lwt.2004.09.014.
  • Chang, S. H.; Chen, Y. J.; Tseng, H. J.; Hsiao, H. I.; Chai, H. J.; Shang, K. C.; Tsai, G. J.; Tsai, G. -J. Applications of Nisin and EDTA in Food Packaging for Improving Fabricated Chitosan-Polylactate Plastic Film Performance and Fish Fillet Preservation. Membranes. 2021, 11(11), 852–867. DOI: 10.3390/membranes11110852.
  • Zhang, L.; Wang, H.; Jin, C.; Zhang, R.; Li, L.; Li, X.; Jiang, S. Sodium Lactate Loaded Chitosan-Polyvinyl Alcohol/Montmorillonite Composite Film Towards Active Food Packaging. IFSET. 2017, 42, 101–108. DOI: 10.1016/j.ifset.2017.06.007.
  • Wang, W.; Yu, Z.; Alsammarraie, F. K.; Kong, F.; Lin, M.; Mustapha, A. Properties and Antimicrobial Activity of Polyvinyl Alcohol-Modified Bacterial Nanocellulose Packaging Films Incorporated with Silver Nanoparticles. Food Hydrocoll. 2020, 100, 105411–105421. DOI: 10.1016/j.foodhyd.2019.105411.
  • Esa, F.; Tasirin, S. M.; AbdRahman, N. Overview of Bacterial Cellulose Production and Application. Agric. Agric. Sci. Proced. 2014, 2, 113–119. DOI: 10.1016/j.aaspro.2014.11.017.
  • Fang, L.; Catchmark, J. M. Characterization of Cellulose and Other Exopolysaccharides Produced from Gluconacetobacter Strains. Carbohydr. Polym. 2015, 115, 663–669. DOI: 10.1016/j.carbpol.2014.09.028.
  • Campano, C.; Balea, A.; Blanco, A.; Negro, C. Enhancement of the Fermentation Process and Properties of Bacterial Cellulose: A Review. Cellulose. 2016, 23(1), 57–91. DOI: 10.1007/s10570-015-0802-0.
  • Haghighi, H.; Gullo, M.; La China, S.; Pfeifer, F.; Siesler, H. W.; Licciardello, F.; Pulvirenti, A. Characterization of Bio-Nanocomposite Films Based on Gelatin/Polyvinyl Alcohol Blend Reinforced with Bacterial Cellulose Nanowhiskers for Food Packaging Applications. Food Hydrocoll. 2021, 113, 106454–106464. DOI: 10.1016/j.foodhyd.2020.106454.
  • Salari, M.; Khiabani, M. S.; Mokarram, R. R.; Ghanbarzadeh, B.; Kafil, H. S. Development and Evaluation of Chitosan Based Active Nanocomposite Films Containing Bacterial Cellulose Nanocrystals and Silver Nanoparticles. Food Hydrocoll. 2018, 84, 414–423. DOI: 10.1016/j.foodhyd.2018.05.037.
  • Vilela, C.; Moreirinha, C.; Domingues, E. M.; Figueiredo, F. M.; Almeida, A.; Freire, C. S. Antimicrobial and Conductive Nanocellulose-Based Films for Active and Intelligent Food Packaging. J. Nanomater. 2019, 9(7), 980–996. DOI: 10.3390/nano9070980.
  • Sharma, C.; Bhardwaj, N. K.; Pathak, P. Static Intermittent Fed-Batch Production of Bacterial Nanocellulose from Black Tea and Its Modification Using Chitosan to Develop Antibacterial Green Packaging Material. J. Clean. Prod. 2021, 279, 123608–123622. DOI: 10.1016/j.jclepro.2020.123608.
  • Zhang, W.; Zhang, Y.; Cao, J.; Jiang, W. Improving the Performance of Edible Food Packaging Films by Using Nanocellulose as an Additive. Int. J. Biol. Macromol. 2021, 166, 288–296. DOI: 10.1016/j.ijbiomac.2020.10.185.
  • Ludwicka, K.; Kaczmarek, M.; Białkowska, A. Bacterial Nanocellulose—A Biobased Polymer for Active and Intelligent Food Packaging Applications: Recent Advances and Developments. Polymers. 2020, 12(10), 2209–2232. DOI: 10.3390/polym12102209.
  • Yang, G.; Xie, J.; Hong, F.; Cao, Z.; Yang, X. Antimicrobial Activity of Silver Nanoparticle Impregnated Bacterial Cellulose Membrane: Effect of Fermentation Carbon Sources of Bacterial Cellulose. Carbohydr. Polym. 2012, 87(1), 839–845. DOI: 10.1016/j.carbpol.2011.08.079.
  • Choo, K. W.; Dhital, R.; Mao, L.; Lin, M.; Mustapha, A. Development of Polyvinyl Alcohol/Chitosan/Modified Bacterial Nanocellulose Films Incorporated with 4-Hexylresorcinol for Food Packaging Applications. Food Packag. Shelf Life. 2021, 30, 100769–100780. DOI: 10.1016/j.fpsl.2021.100769.
  • Costa, S. M.; Ferreira, D. P.; Teixeira, P.; Ballesteros, L. F.; Teixeira, J. A.; Fangueiro, R. Active Natural-Based Films for Food Packaging Applications: The Combined Effect of Chitosan and Nanocellulose. Int. J. Biol. Macromol. 2021, 177, 241–251. DOI: 10.1016/j.ijbiomac.2021.02.105.
  • Maliha, M.; Herdman, M.; Brammananth, R.; McDonald, M.; Coppel, R.; Werrett, M.; Batchelor, W.; Batchelor, W. Bismuth Phosphinate Incorporated Nanocellulose Sheets with Antimicrobial and Barrier Properties for Packaging Applications. J. Clean. Product. 2020, 246, 119016–119028. DOI: 10.1016/j.jclepro.2019.119016.
  • Jipa, I. M.; Stoica-Guzun, A.; Stroescu, M. Controlled Release of Sorbic Acid from Bacterial Cellulose Based Mono and Multilayer Antimicrobial Films. LWT. 2012, 47(2), 400–406. DOI: 10.1016/j.lwt.2012.01.039.
  • Kamel, R.; Afifi, S. M.; Kassem, I. A.; Elkasabgy, N. A.; Farag, M. A. Arabinoxylan and Rhamnogalacturonan Mucilage: Outgoing and Potential Trends of Pharmaceutical, Environmental, and Medicinal Merits. Int. J. Biol. Macromol. 2020, 165, 2550–2564. DOI: 10.1016/j.ijbiomac.2020.10.175.
  • Zeng, W. W.; Lai, L. S. Characterization of the Mucilage Extracted from the Edible Fronds of Bird’s Nest Fern (Asplenium australasicum) with Enzymatic Modifications. Food Hydrocoll. 2016, 53, 84–92. DOI: 10.1016/j.foodhyd.2015.03.026.
  • Chiang, C. F.; Lai, L. S. Effect of Enzyme-Assisted Extraction on the Physicochemical Properties of Mucilage from the Fronds of Asplenium australasicum (J. Sm.) Hook. Int. J. Biol. Macromol. 2019, 124, 346–353. DOI: 10.1016/j.ijbiomac.2018.11.181.
  • Stintzing, F. C.; Carle, R. Cactus Stems (Opuntia Spp.): A Review on Their Chemistry, Technology, and Uses. Mol. Nutr Food Res. 2005, 49(2), 175–194. DOI: 10.1002/mnfr.200400071.
  • Qamar, S. A.; Junaid, M.; Riasat, A.; Jahangeer, M.; Bilal, M.; Mu, B. Z. Carrageenan‐based Hybrids with Biopolymers and Nano‐structured Materials for Biomimetic Applications. Starch - Stärke. 2022, 2200018, 2200018. DOI: 10.1002/star.202200018.
  • Gheribi, R.; Puchot, L.; Verge, P.; Jaoued-Grayaa, N.; Mezni, M.; Habibi, Y.; Khwaldia, K. Development of Plasticized Edible Films from Opuntia ficus-Indica Mucilage: A Comparative Study of Various Polyol Plasticizers. Carbohydr. Polym. 2018, 190, 204–211. DOI: 10.1016/j.carbpol.2018.02.085.
  • De Alvarenga Pinto Cotrim, M.; Mottin, A. C.; Ayres, E. Preparation and Characterization of Okra Mucilage (Abelmoschus esculentus) Edible Films. Macromol. Sym. 2016, 367(1), 90–100. DOI: 10.1002/masy.201600019.
  • Allegra, A.; Sortino, G.; Inglese, P.; Settanni, L.; Todaro, A.; Gallotta, A. The Effectiveness of Opuntia ficus-Indica Mucilage Edible Coating on Post-Harvest Maintenance of ‘Dottato’fig (Ficus carica L.) Fruit. Food Packag. Shelf Life. 2017, 12, 135–141. DOI: 10.1016/j.fpsl.2017.04.010.
  • Guadarrama-Lezama, A. Y.; Castaño, J.; Velázquez, G.; Carrillo-Navas, H.; Alvarez-Ramírez, J. Effect of Nopal Mucilage Addition on Physical, Barrier and Mechanical Properties of Citric Pectin-Based Films. J. Food Sci. Techol. 2018, 55(9), 3739–3748. DOI: 10.1007/s13197-018-3304-x.
  • Zambrano, J.; Valera, A. M.; Materano, W.; Maffei, M.; Quintero, I.; Ruiz, Y.; Marcano-Belmonte, D. Effect of Edible Coatings Based on Cactus (Opuntia Elatior Mill.) Mucilage on the Physicochemical and Sensory Properties of Guava Fruits (Psidium Guajava L.) Under Controlled Storage. Rev. de la Fac. de Agron. 2018, 35(4), 476–495.
  • Liguori, G.; Gaglio, R.; Settanni, L.; Inglese, P.; D’Anna, F.; Miceli, A.; Genovese, F. Effect of Opuntia ficus-indica Mucilage Edible Coating in Combination with Ascorbic Acid, on Strawberry Fruit Quality During Cold Storage. J. Food Qual. 2021, 2021, 1–8. DOI: 10.1155/2021/9976052.
  • Bernardino-Nicanor, A.; Montañez-Soto, J. L.; Conde-Barajas, E.; Negrete-Rodríguez, M. D. L. L. X.; Teniente-Martínez, G.; Vargas-León, E. A.; Juárez-Goiz, J.; Acosta-García, G.; González-Cruz, L. Spectroscopic and Structural Analyses of Opuntia Robusta Mucilage and Its Potential as an Edible Coating. Coatings. 2018, 8(12), 466–477. DOI: https://doi.org/10.3390/coatings8120466.
  • dos Santos Morais, M. A.; Fonseca, K. S.; Viégas, E. K. D.; de Almeida, S. L.; Maia, R. K. M.; Silva, V. N. S.; Do NascimentoSimões, A. Mucilage of Spineless Cactus in the Composition of an Edible Coating for Minimally Processed Yam (Dioscorea Spp.). J. Food Meas. Charact. 2019, 13(3), 2000–2008. DOI: 10.1007/s11694-019-00120-9.
  • Abera, N. G.; Kebede, W.; Wassu, M. Effect of Aloe Gel and Cactus Mucilage Coating on Chemical Quality and Sensory Attributes of Mango (Mangifera indica L.). Int. J. Postharvest Technol. Innov. 2019, 7(2), 31–43.
  • Del-Valle, V.; Hernández-Muñoz, P.; Guarda, A.; Galotto, M. J. Development of a Cactus-Mucilage Edible Coating (Opuntiaficusindica) and Its Application to Extend Strawberry (Fragaria ananassa) Shelf-Life. Food Chem. 2005, 91(4), 751–756. DOI: 10.1016/j.foodchem.2004.07.002.
  • Oliveira, N. L.; Rodrigues, A. A.; Neves, I. C. O.; Lago, A. M. T.; Borges, S. V.; de Resende, J. V. Development and Characterization of Biodegradable Films Based on Pereskia aculeata Miller Mucilage. Ind. Crops Prod. 2019, 130, 499–510. DOI: 10.1016/j.indcrop.2019.01.014.
  • Dick, M.; Costa, T. M. H.; Gomaa, A.; Subirade, M.; de Oliveira Rios, A.; Flôres, S. H. Edible Film Production from Chia Seed Mucilage: Effect of Glycerol Concentration on Its Physicochemical and Mechanical Properties. Carbohydr. Polym. 2015, 130, 198–205. DOI: 10.1016/j.carbpol.2015.05.040.
  • Sadeghi-Varkani, A.; Emam-Djomeh, Z.; Askari, G. Physicochemical and Microstructural Properties of a Novel Edible Film Synthesized from Balangu Seed Mucilage. Int. J. Biol. Macromol. 2018, 108, 1110–1119. DOI: 10.1016/j.ijbiomac.2017.11.029.
  • Marvdashti, L. M.; Koocheki, A.; Yavarmanesh, M. Alyssum Homolocarpum Seed Gum-Polyvinyl Alcohol Biodegradable Composite Film: Physicochemical, Mechanical, Thermal and Barrier Properties. Carbohydr. Polym. 2017, 155, 280–293. DOI: 10.1016/j.carbpol.2016.07.123.
  • Gheorghita, R.; Gutt, G.; Amariei, S. The Use of Edible Films Based on Sodium Alginate in Meat Product Packaging: An Eco-Friendly Alternative to Conventional Plastic Materials. Coatings. 2020, 10(2), 166. DOI: 10.3390/coatings10020166.
  • Singh, A.; Gu, Y.; Castellarin, S. D.; Kitts, D. D.; Pratap-Singh, A. Development and Characterization of the Edible Packaging Films Incorporated with Blueberry Pomace. Foods. 2020, 9(11), 1599. DOI: 10.3390/foods9111599.
  • Rawdkuen, S., Edible Films Incorporated with Active Compounds: Their Properties and Application, Active Antimicrobial Food Packag., 2019, Isıl, V.; Uzunlu, S.; Eds, 71–85.
  • Naskar, A.; Chakraborty, I.; Roy, S. R.; Bhattacharya, T. Edible Film on Food with Smart Incorporation of Health‐friendly Supplements. Nanotech. in Intell. Food Pkg. 2022, 361–382. DOI: 10.1002/9781119819011.ch15.
  • Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Combinational Edible Antimicrobial Films and Coatings. Antimicrobial. Food Pkg. 2016, 633–646. DOI: 10.1016/B978-0-12-800723-5.00052-8.
  • Restuccia, D.; Spizzirri, U. G.; Parisi, O. I.; Cirillo, G.; Curcio, M.; Iemma, F.; Puoci, F.; Vinci, G.; Picci, N. New EU Regulation Aspects and Global Market of Active and Intelligent Packaging for Food Industry Applications. Food Control. 2010, 21(11), 1425–1435. DOI: https://doi.org/10.1016/j.foodcont.2010.04.028.
  • Mihindukulasuriya, S. D. F.; Lim, L. T. Nanotechnology Development in Food Packaging: A Review. Trends Food Sci. Technol. 2014, 40(2), 149–167. DOI: 10.1016/j.tifs.2014.09.009.