1,682
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Ultrasonic-assisted green synthesis of silver nanoparticles through cinnamon extract: biochemical, structural, and antimicrobial properties

, , , & ORCID Icon
Pages 1984-1994 | Received 10 Apr 2023, Accepted 15 Jul 2023, Published online: 25 Jul 2023

References

  • Dos Santos, C. A.; Seckler, M. M.; Ingle, A. P.; Gupta, I.; Galdiero, S.; Galdiero, M.; Gade, A.; Rai, M. Silver Nanoparticles: Therapeutical Uses, Toxicity, and Safety Issues. J. Pharm. Sci. 2014, 103(7), 1931–1944. DOI: 10.1002/jps.24001.
  • Narayanan, K. B.; Sakthivel, N. Biological Synthesis of Metal Nanoparticles by Microbes. Adv. Colloid Interface Sci. 2010, 156(1–2), 1–13. DOI: 10.1016/j.cis.2010.02.001.
  • Linic, S.; Aslam, U.; Boerigter, C.; Morabito, M. Photochemical Transformations on Plasmonic Metal Nanoparticles. Nat. Mater. 2015, 14(6), 567–576. DOI: 10.1038/nmat4281.
  • Thakkar, K. N.; Mhatre, S. S.; Parikh, R. Y. Biological Synthesis of Metallic Nanoparticles. Nanomed. Nanotechnol. Biol. Med. 2010, 6(2), 257–262. DOI: 10.1016/j.nano.2009.07.002.
  • Yoon, W.-J.; Jung, K.-Y.; Liu, J.; Duraisamy, T.; Revur, R.; Teixeira, F. L.; Sengupta, S.; Berger, P. R. Plasmon-Enhanced Optical Absorption and Photocurrent in Organic Bulk Heterojunction Photovoltaic Devices Using Self-Assembled Layer of Silver Nanoparticles. Sol. Energy Mater. Sol. Cells. 2010, 94(2), 128–132. DOI: 10.1016/j.solmat.2009.08.006.
  • Yang, Y.; Jin, P.; Zhang, X.; Ravichandran, N.; Du, H.; Yu, C.; Ying, Q.; Xu, Y.; Yin, J.; Wang, K. New Epigallocatechin Gallate (EGCG) Nanocomplexes Co-Assembled with 3-Mercapto-1-Hexanol and β-Lactoglobulin for Improvement of Antitumor Activity. J. Biomed. Nanotechnol. 2017, 13(7), 805–814. DOI: 10.1166/jbn.2017.2400.
  • Roy, A.; Bulut, O.; Some, S.; Mandal, A. K.; Yilmaz, M. D. Green Synthesis of Silver Nanoparticles: Biomolecule-Nanoparticle Organizations Targeting Antimicrobial Activity. Rsc. Adv. 2019, 9(5), 2673–2702. DOI: 10.1039/C8RA08982E.
  • Wang, W.; Yu, Z.; Alsammarraie, F. K.; Kong, F.; Lin, M.; Mustapha, A. Properties and Antimicrobial Activity of Polyvinyl Alcohol-Modified Bacterial Nanocellulose Packaging Films Incorporated with Silver Nanoparticles. Food Hydrocoll. 2020, 100, 105411. Article 105411 DOI: 10.1016/j.foodhyd.2019.105411.
  • Wasilewska, A.; Klekotka, U.; Zambrzycka, M.; Zambrowski, G.; Święcicka, I.; Kalska-Szostko, B. Physico-Chemical Properties and Antimicrobial Activity of Silver Nanoparticles Fabricated by Green Synthesis. Food Chem. 2023, 400, 133960. DOI: 10.1016/j.foodchem.2022.133960.
  • Abalkhil, T. A.; Alharbi, S. A.; Salmen, S. H.; Wainwright, M. Bactericidal Activity of Biosynthesized Silver Nanoparticles Against Human Pathogenic Bacteria. Biotechnol. Biotechnol. Equip. 2017, 31(2), 411–417. DOI: 10.1080/13102818.2016.1267594.
  • Qayyum, S.; Khan, A. U. Biofabrication of Broad Range Antibacterial and Antibiofilm Silver Nanoparticles. IET Nanobiotechnol. 2016, 10(5), 349–357. DOI: 10.1049/iet-nbt.2015.0091.
  • Tippayawat, P.; Phromviyo, N.; Boueroy, P.; Chompoosor, A. Green Synthesis of Silver Nanoparticles in Aloe Vera Plant Extract Prepared by a Hydrothermal Method and Their Synergistic Antibacterial Activity. Peer J. 2016, 4, e2589. DOI: 10.7717/peerj.2589.
  • Wang, L.; Periyasami, G.; Aldalbahi, A.; Fogliano, V. The Antimicrobial Activity of Silver Nanoparticles Biocomposite Films Depends on the Silver Ions Release Behaviour. Food Chem. 2021, 359, 129859. DOI: 10.1016/j.foodchem.2021.129859.
  • Duan, H.; Wang, D.; Li, Y. Green Chemistry for Nanoparticle Synthesis. Chem. Soc. Rev. 2015, 44(16), 5778–5792. DOI: 10.1039/C4CS00363B.
  • Nouri, A.; Yaraki, M. T.; Lajevardi, A.; Rezaei, Z.; Ghorbanpour, M.; Tanzifi, M. Ultrasonic-Assisted Green Synthesis of Silver Nanoparticles Using Mentha Aquatica Leaf Extract for Enhanced Antibacterial Properties and Catalytic Activity. Colloid Interface Sci. Commun. 2020, 35, 100252. DOI: 10.1016/j.colcom.2020.100252.
  • Anjum, S.; Jacob, G.; Gupta, B. Investigation of the Herbal Synthesis of Silver Nanoparticles Using Cinnamon Zeylanicum Extract. Emergent Mater. 2019, 2(1), 113–122. DOI: 10.1007/s42247-019-00023-x.
  • Vasconcelos, N. G.; Croda, J.; Simionatto, S. Antibacterial Mechanisms of Cinnamon and Its Constituents: A Review. Microb. Pathog. 2018, 120, 198–203. DOI: 10.1016/j.micpath.2018.04.036.
  • Gao, L.; Mei, S.; Ma, H.; Chen, X. Ultrasound-Assisted Green Synthesis of Gold Nanoparticles Using Citrus Peel Extract and Their Enhanced Anti-Inflammatory Activity. Ultrason. Sonochem. 2022, 83, 105940. DOI: 10.1016/j.ultsonch.2022.105940.
  • Gao, X.; Ohlander, M.; Jeppsson, N.; Björk, L.; Trajkovski, V. Changes in Antioxidant Effects and Their Relationship to Phytonutrients in Fruits of Sea Buckthorn (Hippophae Rhamnoides L.) During Maturation. J. Agric. Food. Chem. 2000, 48(5), 1485–1490. DOI: 10.1021/jf991072g.
  • Yen, G. C.; Chen, H. Y. Antioxidant Activity of Various Tea Extracts in Relation to Their Antimutagenicity. J. Agric. Food. Chem. 1995, 43(1), 27–32. DOI: 10.1021/jf00049a007.
  • Benzie, I. F. F.; Strani, J. J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant power”: The FRAP Assay. Anal. Biochem. 1996, 239(1), 70–76. DOI: 10.1006/abio.1996.0292.
  • Raza, M. A.; Saeed, F.; Afzaal, M.; Imran, A.; Niaz, B.; Hussain, M.; Al Jbawi, E.; Kashif Mukhtar, M.; Waleed, M.; Al Jbawi, E. Comparative Study of Cross-And Uncross-Linked Arabinoxylans Extracted from Maize Bran with Special Reference to Their Structural and Antioxidant Potential. Int. J. Food Prop. 2022, 25(1), 2495–2504. DOI: 10.1080/10942912.2022.2143524.
  • Vázquez, B. E. R.; Rodríguez-Beas, C.; Iñiguez-Palomares, R. A.; Santacruz-Ortega, H.; Mendoza-Cruz, R.; Bazán-Díaz, L. S.; Navarro, R. E.; Rodríguez-León, E.; Navarro, R. E. Spectroscopic Analysis and Nuclear Magnetic Resonance for Silver Nanoparticles Synthesized with Trans-Resveratrol and Cis-Resveratrol. Colloid Polym. Sci. 2022, 300(5), 465–475. DOI: 10.1007/s00396-022-04957-3.
  • Clinical and Laboratory Standards. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard M2-A8; Clinical and Laboratory Standards Institute; CLSI: Wayne, PA, USA, 2003.
  • Lee, S. Y.; Krishnamurthy, S.; Cho, C.-W.; Yun, Y.-S. Biosynthesis of Gold Nanoparticles Usingocimum Sanctumextracts by Solvents with Different Polarity. ACS Sustain. Chem. Eng. 2016, 4(5), 2651–2659. DOI: 10.1021/acssuschemeng.6b00161.
  • Surveswaran, S.; Cai, Y.-Z.; Corke, H.; Sun, M. Systematic Evaluation of Natural Phenolic Antioxidants from 133 Indian Medicinal Plants. Food Chem. 2007, 102(3), 938–953. DOI: 10.1016/j.foodchem.2006.06.033.
  • Ali, Z. A.; Yahya, R.; Sekaran, S. D.; Puteh, R. (2016). Green Synthesis of Silver Nanoparticles Using Apple Extract and Its Antibacterial Properties. Advances in Materials Science and Engineering, 2016. 10.1155/2016/4102196
  • Klekotka, U.; Satula, D.; Nordblad, P.; Kalska-Szostko, B. Layered Magnetite Nanoparticles Modification–Synthesis, Structure, and Magnetic Characterization. Arabian J. Chem. 2020, 13(1), 1323–1334. DOI: 10.1016/j.arabjc.2017.11.002.
  • Marhaba, S. Effect of Size, Shape and Environment on the Optical Response of Metallic Nanoparticles. In Noble and Precious Metals-Properties, Nanoscale Effects and Applications, IntechOpen, 2017; 10.5772/intechopen.71574.
  • Ulug, B.; Turkdemir, M. H.; Cicek, A.; Mete, A. Role of Irradiation in the Green Synthesis of Silver Nanoparticles Mediated by Fig (Ficus Carica) Leaf Extract. Spectrochim. Acta, Part A: Mol. Biomol. Spectrosc. 2015, 135, 153–161. DOI: 10.1016/j.saa.2014.06.142.
  • Villalpando, M.; Gomez-Hurtado, M. A.; Rosas, G.; Saavedra-Molina, A. Ag Nanoparticles Synthesized Using Lavandula Angustifolia and Their Cytotoxic Evaluation in Yeast. Mater. Today Commun. 2022, 31, 103633. DOI: 10.1016/j.mtcomm.2022.103633.
  • Singha, S.; Neog, K.; Kalita, P. P.; Talukdar, N.; Sarma, M. P. Biological Synthesis of Silver Nanoparticles by Neptunia Oleraceae. Int. J. Basic Appl. Biol. 2014, 2(2), 55–59.
  • Jemal, K.; Sandeep, B. V.; Pola, S. (2017). Synthesis, Characterization, and Evaluation of the Antibacterial Activity of Allophylus Serratus Leaf and Leaf Derived Callus Extracts Mediated Silver Nanoparticles. Journal of Nanomaterials, 2017.
  • Yin, I. X.; Zhang, J.; Zhao, I. S.; Mei, M. L.; Li, Q.; Chu, C. H. The Antibacterial Mechanism of Silver Nanoparticles and Its Application in Dentistry. Int. J. Nanomed. 2020, 15, 2555. DOI: 10.2147/IJN.S246764.
  • Onodera, A.; Nishiumi, F.; Kakiguchi, K.; Tanaka, A.; Tanabe, N.; Honma, A.; Yayama, K.; Yoshioka, Y.; Nakahira, K.; Yonemura, S. Short-Term Changes in Intracellular ROS Localisation After the Silver Nanoparticles Exposure Depending on Particle Size. Toxicology Reports. 2015, 2, 574–579. DOI: https://doi.org/10.1016/j.toxrep.2015.03.004.
  • Slavin, Y. N.; Asnis, J.; H¨afeli, U. O.; Bach, H. Metal Nanoparticles: Understanding the Mechanisms Behind Antibacterial Activity. J. Nanobiotechnol. 2017, 15(1), 1–20. DOI: 10.1186/s12951-017-0308-z.