776
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimization of exopolysaccharide produced by L. kefiranofaciens ZW3 using response surface Methodology

, , , , &
Pages 2285-2293 | Received 22 May 2023, Accepted 03 Aug 2023, Published online: 20 Aug 2023

References

  • Vinogradov, E.; Sadovskaya, I.; Grard, T.; Chapot-Chartier, M.-P. Structural Studies of the Rhamnose-Rich Cell Wall Polysaccharide of Lactobacillus Casei BL23. Carbohydr. Res. 2016, 435, 156–161. DOI: 10.1016/j.carres.2016.10.002.
  • Perveen, S.; Anwar, M. J.; Ismail, T.; Hameed, A.; Naqvi, S. S.; Mahomoodally, M. F.; Saeed, F.; Imran, A.; Hussain, M.; Imran, M., et al. Utilization of Biomaterials to Develop the Biodegradable Food Packaging. Int. J. Food Prop. 2023, 26(1), 1122–1139. DOI: 10.1080/10942912.2023.2200606.
  • Ma, L. Z.; Wang, D.; Liu, Y.; Zhang, Z.; Wozniak, D. J. Regulation of Biofilm Exopolysaccharide Biosynthesis and Degradation in Pseudomonas aeruginosa. Annu. Rev. Microbiol. 2022, 76(1), 413–433. DOI: 10.1146/annurev-micro-041320-111355.
  • Shahabi-Ghahfarrokhi, I.; Khodaiyan, F.; Mousavi, M.; Yousefi, H. Preparation of UV-Protective Kefiran/nano-ZnO Nanocomposites: Physical and Mechanical Properties. Int. J. Biol. Macromol. 2015, 72, 41–46. DOI: 10.1016/j.ijbiomac.2014.07.047.
  • Zajsek, K.; Kolar, M.; Gorsek, A. Characterisation of the Exopolysaccharide Kefiran Produced by Lactic Acid Bacteria Entrapped within Natural Kefir Grains. Int. J. Dairy Technol. 2011, 64(4), 544–548. DOI: 10.1111/j.1471-0307.2011.00704.x.
  • Du, R.; Yu, L.; Yu, N.; Ping, W.; Song, G.; Ge, J. Characterization of Exopolysaccharide Produced by Levilactobacillus brevis HDE-9 and Evaluation of Its Potential Use in Dairy Products. Int. J. Biol. Macromol. 2022, 217, 303–311. DOI: 10.1016/j.ijbiomac.2022.07.057.
  • Wang, Y.; Ahmed, Z.; Feng, W.; Li, C.; Song, S. Physicochemical Properties of Exopolysaccharide Produced by Lactobacillus Kefiranofaciens ZW3 Isolated from Tibet Kefir. Int. J. Biol. Macromol. 2008, 43(3), 283–288. DOI: 10.1016/j.ijbiomac.2008.06.011.
  • Ahmed, Z.; Wang, Y.; Anjum, N.; Ahmad, A.; Khan, S. T. Characterization of Exopolysaccharide Produced by Lactobacillus Kefiranofaciens ZW3 Isolated from Tibet Kefir–Part II. Food. Hydrocoll. 2013, 30(1), 343–350. DOI: 10.1016/j.foodhyd.2012.06.009.
  • Yılmaz, Ş. Facile Synthesis of Surfactant-Modified Layered Double Hydroxide Magnetic Hybrid Composite and Its Application for Bisphenol A Adsorption: Statistical Optimization of Operational Variables. Surf. Interfaces. 2022, 32, 102171. DOI: 10.1016/j.surfin.2022.102171.
  • Yılmaz, Ş.; Zengin, A.; Şahan, T. Bentonite Grafted with Poly(n-Acryloylglycineamide) Brush: A Novel Clay-Polymer Brush Hybrid Material for the Effective Removal of Hg(ii) and As(v) from Aqueous Environments. Colloids Surf. A Physicochem. Eng. Aspects. 2021, 612, 125979. DOI: 10.1016/j.colsurfa.2020.125979.
  • Yılmaz, Ş.; Zengin, A.; Şahan, T.; Gübbük, İ. H. Efficient Removal of 2,4-Dichlorophenoxyacetic Acid from Aqueous Medium Using Polydopamine/Polyacrylamide Co-Deposited Magnetic Sporopollenin and Optimization with Response Surface Methodology Approach. J Polym. Environ. 2023, 31(1), 36–49. DOI: 10.1007/s10924-022-02617-9.
  • Mehmood, T.; Ahmed, A.; Ahmad, A.; Ahmad, M. S.; Sandhu, M. A. Optimization of Mixed Surfactants-Based β-Carotene Nanoemulsions Using Response Surface Methodology: An Ultrasonic Homogenization Approach. Food Chem. 2018, 253, 179–184. DOI: 10.1016/j.foodchem.2018.01.136.
  • Mehmood, T.; Ahmad, A.; Ahmed, A.; Ahmed, Z. Optimization of Olive Oil Based O/W Nanoemulsions Prepared Through Ultrasonic Homogenization: A Response Surface Methodology Approach. Food Chem. 2017, 229, 790–796. DOI: 10.1016/j.foodchem.2017.03.023.
  • Mehmood, T. Optimisation of Food Grade Mixed Surfactant‐Based L‐Ascorbic Acid Nanoemulsions Using Response Surface Methodology. IET Nanobiotechnol. 2021, 15(3), 309–317. DOI: 10.1049/nbt2.12014.
  • Choudhury, A. R.; Bhattacharyya, M.; Prasad, G. Application of Response Surface Methodology to Understand the Interaction of Media Components During Pullulan Production by Aureobasidium pullulans RBF-4A3. Biocatal. Agric. Biotechnol. 2012, 1(3), 232–237. DOI: 10.1016/j.bcab.2012.02.003.
  • Yu, X.; Wang, Y.; Wei, G.; Dong, Y. Media Optimization for Elevated Molecular Weight and Mass Production of Pigment-Free Pullulan. Carbohydr. Polym. 2012, 89(3), 928–934. DOI: 10.1016/j.carbpol.2012.04.038.
  • Wu, S.; Chen, J.; Pan, S. Optimization of Fermentation Conditions for the Production of Pullulan by a New Strain of Aureobasidium pullulans Isolated from Sea Mud and Its Characterization. Carbohydr. Polym. 2012, 87(2), 1696–1700. DOI: 10.1016/j.carbpol.2011.09.078.
  • Sugumaran, K.; Shobana, P.; Balaji, P. M.; Ponnusami, V.; Gowdhaman, D. Statistical Optimization of Pullulan Production from Asian Palm Kernel and Evaluation of Its Properties. Int. J. Biol. Macromol. 2014, 66, 229–235. DOI: 10.1016/j.ijbiomac.2014.02.045.
  • Ju, X.-M.; Wang, D.-H.; Zhang, G.-C.; Cao, D.; Wei, G.-Y. Efficient Pullulan Production by Bioconversion Using Aureobasidium pullulans as the Whole-Cell Catalyst. Appl. Microbiol. Biotechnol. 2015, 99(1), 211–220. DOI: 10.1007/s00253-014-6100-1.
  • Ahmed, Z.; Wang, Y.; Ahmad, A.; Khan, S. T.; Nisa, M.; Ahmad, H.; Afreen, A. Kefir and Health: A Contemporary Perspective. Critical Reviews in Food Science and Nutrition. Crit. Rev. Food Sci. Nutr. 2013, 53(5), 422–434. DOI: 10.1080/10408398.2010.540360.
  • Yoon, S.; Hong, E.; Kim, S.; Lee, P.; Kim, M.; Yang, H.; Ryu, Y. Optimization of Culture Medium for Enhanced Production of Exopolysaccharide from Aureobasidium pullulans. Bioprocess Biosyst. Eng. 2012, 35(1–2), 167–172. DOI: 10.1007/s00449-011-0620-1.
  • Wang, Y.; Wang, J.; Ahmed, Z.; Bai, X.; Wang, J. Complete Genome Sequence of Lactobacillus Kefiranofaciens ZW3. J. Bacteriol. 2011, 193(16), 4280–4281. DOI: 10.1128/JB.05306-11.
  • Chen, W.; Gao, L.; Song, L.; Sommerfeld, M.; Hu, Q. An Improved Phenol-Sulfuric Acid Method for the Quantitative Measurement of Total Carbohydrates in Algal Biomass. Algal Res. 2023, 70, 102986. DOI: 10.1016/j.algal.2023.102986.
  • Mehmood, T. Optimization of the Canola Oil Based Vitamin E Nanoemulsions Stabilized by Food Grade Mixed Surfactants Using Response Surface Methodology. Food Chem. 2015, 183, 1–7. DOI: 10.1016/j.foodchem.2015.03.021.
  • García, A.; Fernández-Sandoval, M. T.; Morales-Guzmán, D.; Martínez-Morales, F.; Trejo-Hernández, M. R. Advances in Exopolysaccharide Production from Marine Bacteria. J. Chem. Technol. Biotechnol. 2022, 97(10), 2694–2705. DOI: 10.1002/jctb.7156.
  • Tabet, Z.; Belaadi, A.; Boumaaza, M.; Bourchak, M. Drilling of a Bidirectional Jute Fibre and Cork-Reinforced Polymer Biosandwich Structure: ANN and RSM Approaches for Modelling and Optimization. Int. J. Adv. Manuf. Technol. 2021, 117(11–12), 3819–3839. DOI: 10.1007/s00170-021-07679-y.
  • Mitsue, T.; Tachibana, K.; Hara, T.; Fujio, Y. Isolation of Kefiran-Producing Lactic Acid Bacteria from Kefir Grain and Improvement of Kefiran Productivity-Note. Seibutsu-Kogaku Kaishi. 1998, 76(11), 447–450.
  • Taniguchi, M.; Nomura, M.; Itaya, T.; Tanaka, T. Kefiran Production by Lactobacillus Kefiranofaciens Under the Culture Conditions Established by Mimicking the Existence and Activities of Yeast in Kefir Grains. Food Sci. Technol. Res. 2001, 7(4), 333–337. DOI: 10.3136/fstr.7.333.
  • Amin, N. A. S.; Anggoro, D. D. Optimization of Direct Conversion of Methane to Liquid Fuels Over Cu Loaded W/ZSM-5 Catalyst. Fuel. 2004, 83(4), 487–494. DOI: 10.1016/j.fuel.2003.09.013.