724
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spoilage-related bacterial diversity of vacuum-packed plant-based meat as affected by essential oil and preservative

, , , , ORCID Icon, & ORCID Icon show all
Pages 2407-2419 | Received 24 Apr 2023, Accepted 27 Jul 2023, Published online: 24 Aug 2023

References

  • Ahmad, M.; Qureshi, S.; Akbar, M. H.; Siddiqui, S. A.; Gani, A.; Mushtaq, M.; Hassan, I.; Dhull, S. B. Plant-Based Meat Alternatives: Compositional Analysis, Current Development and Challenges. Appl. Food Res. 2022, 2(2), 100154. DOI: 10.1016/J.AFRES.2022.100154.
  • Bohrer, B. M. An Investigation of the Formulation and Nutritional Composition of Modern Meat Analogue Products. Food Sci. Hum. Wellness. 2019, 8(4), 320–329. DOI: 10.1016/j.fshw.2019.11.006.
  • Bryant, C. J. We Can’t Keep Meating Like This: Attitudes Towards Vegetarian and Vegan Diets in the United Kingdom. Sustainability-Basel. 2019, 11(23), 6844. DOI: 10.3390/su11236844.
  • Hartmann, C.; Siegrist, M. Our Daily Meat: Justification, Moral Evaluation and Willingness to Substitute. Food Qual. Prefer. 2020, 80, 103799. DOI: 10.1016/j.foodqual.2019.103799.
  • Graca, J.; Godinho, C. A.; Truninger, M. Reducing Meat Consumption and Following Plant-Based Diets: Current Evidence and Future Directions to Inform Integrated Transitions. Trends Food Sci. Tech. 2019, 91, 380–390. DOI: 10.1016/j.tifs.2019.07.046.
  • Kaleda, A.; Talvistu, K.; Vaikma, H.; Tammik, M. L.; Rosenvald, S.; Vilu, R. Physicochemical, Textural, and Sensorial Properties of Fibrous Meat Analogs from Oat-Pea Protein Blends Extruded at Different Moistures, Temperatures, and Screw Speeds. Fut. Foods. 2021, 4, 100092. DOI: 10.1016/J.FUFO.2021.100092.
  • Carmo, C. S. D.; Knutsen, S. H.; Malizia, G.; Dessev, T.; Geny, A.; Zobel, H.; Myhrer, K. S.; Varela, P.; Sahlstrøm, S. Meat Analogues from a Faba Bean Concentrate Can Be Generated by High Moisture Extrusion. Fut. Foods. 2021, 3, 100014. DOI: 10.1016/J.FUFO.2021.100014.
  • Schreuders, F. K. G.; Dekkers, B. L.; Bodnar, I.; Erni, P.; Boom, R. M.; van der Goot, A. J. Comparing Structuring Potential of Pea and Soy Protein with Gluten for Meat Analogue Preparation. J. Food Eng. 2019, 261, 32–39. DOI: 10.1016/j.jfoodeng.2019.04.022.
  • Immonen, M.; Chandrekusuma, A.; Sibakov, J.; Poikelispaa, M.; Tuula, S. S. Texturization of a Blend of Pea and Destarched Oat Protein Using High-Moisture Extrusion. Foods. 2021, 10(7), 1517. DOI: 10.3390/FOODS10071517.
  • Chiang, J. H.; Tay, W.; Ong, D. S. M.; Liebl, D.; Ng, C. P.; Henry, C. J. Physicochemical, Textural and Structural Characteristics of Wheat Gluten-Soy Protein Composited Meat Analogues Prepared with the Mechanical Elongation Method. Food Struct. 2021, 28, 100183. DOI: 10.1016/J.FOOSTR.2021.100183.
  • Dekkers, B. L.; Boom, R. M.; Goot, A. J. V. D. Structuring Processes for Meat Analogues. Trends Food Sci. Tech. 2018, 81, 25–36. DOI: 10.1016/j.tifs.2018.08.011.
  • Dekkers, B. L.; Nikiforidis, C. V.; Goot, A. J. V. D. Shear-Induced Fibrous Structure Formation from a Pectin/SPI Blend. Innov. Food Sci. Emerg. 2016, 36, 193–200. DOI: 10.1016/j.ifset.2016.07.003.
  • Zhang, J. C.; Liu, L.; Liu, H. Z.; Yoon, A.; Rizvi, S. S. H.; Wang, Q. Changes in Conformation and Quality of Vegetable Protein During Texturization Process by Extrusion. Crit. Rev. Food Sci. 2019, 59(20), 3267–3280. DOI: 10.1080/10408398.2018.1487383.
  • Sun, C. X.; Ge, J.; He, J.; Gan, R. Y.; Fang, Y. P. Processing, Quality, Safety, and Acceptance of Meat Analogue Products. Engineering. 2021, 7(5), 674–678. DOI: 10.1016/j.eng.2020.10.011.
  • Dai, Z. H.; Han, L. N.; Li, Z.; Gu, M. Q.; Xiao, Z. G.; Lu, F. Combination of Chitosan, Tea Polyphenols, and Nisin on the Bacterial Inhibition and Quality Maintenance of Plant-Based Meat. Foods. 2022, 1524, 11. DOI: 10.3390/FOODS11101524.
  • Geeraerts, W.; Vuyst, L. D.; Leroy, F. Ready-To-Eat Meat Alternatives, a Study of Their Associated Bacterial Communities. Food Biosci. 2020, 37, 100681. DOI: 10.1016/j.fbio.2020.100681.
  • Wang, L.; Xu, J. G.; Zhang, M. M.; Zheng, H.; Li, L. Preservation of Soy Protein-Based Meat Analogues by Using PLA/PBAT Antimicrobial Packaging Film. Food Chem. 2022, 380, 132022. DOI: 10.1016/J.FOODCHEM.2021.132022.
  • Zhao, W. H.; Liang, Z.; Qian, M.; Li, X. L.; Dong, H.; Bai, W. D.; Wei, Y. L.; He, S. G. Evolution of Microbial Communities During Fermentation of Chi-Flavor Type Baijiu as Determined by High-Throughput Sequencing. LWT-Food Sci. Technol. 2022, 170, 114102. DOI: 10.1016/j.lwt.2022.114102.
  • Wang, G.; Xu, X.; Zhou, L.; Wang, C.; Yang, F. A Pilot-Scale Study on the Start-Up of Partial Nitrification-Anammox Process for Anaerobic Sludge Digester Liquor Treatment. Bioresource. Technol. 2017, 241, 181–189. DOI: 10.1016/j.biortech.2017.02.125.
  • Zhang, Q. Q.; Li, D.; Zhang, W.; Jiang, M.; Chen, X. H.; Dong, M. S. Comparative Analysis of the Bacterial Diversity of Chinese Fermented Sausages Using High-Throughput Sequencing. LWT-Food Sci. Technol. 2021, 150, 111975. DOI: 10.1016/J.LWT.2021.111975.
  • Blanco, C.; Verbanic, S.; Seelig, B.; Chen, I. A. Easy Diver: A Pipeline for Assembling and Counting High-Throughput Sequencing Data from in vitro Evolution of Nucleic Acids or Peptides. J. Mol. Evol. 2020, 88(6), 477–481. DOI: 10.1007/s00239-020-09954-0.
  • Pichler, M.; Coskun, Ö. K.; Ortega-Arbulú, A. S.; Conci, N.; Wörheide, G.; Vargas, S.; Orsi, W. D. A 16S rRNA Gene Sequencing and Analysis Protocol for the Illumina MiniSeq Platform. Microbiol. Open. 2018, 7(6), e00611. DOI: 10.1002/mbo3.611.
  • Gulin, V.; Vlaičević, B.; Sertić, P. M.; Rebrina, F.; Matoničkin, K. R. Taxonomic and Functional Metrics of Ciliates and Amoeboid Protists in Response to Stream Revitalization. Front. Microbiol. 2022, 13, 842395. DOI: 10.3389/FMICB.2022.842395.
  • Bates, S. T.; Clemente, J. C.; Flores, G. E.; Walters, W. A.; Parfrey, L. W.; Knight, R.; Fierer, N. Global Biogeography of Highly Diverse Protistan Communities in Soil. Isme J. 2013, 7(3), 652–659. DOI: 10.1038/ismej.2012.147.
  • Liu, W. J.; Li, W. C.; Zheng, H. J.; Kwok, L. Y.; Sun, Z. H. Genomics Divergence of Lactococcus lactis Subsp. Lactis Isolated from Naturally Fermented Dairy Products. Food. Res. Int. 2022, 155, 111108. DOI: 10.1016/J.FOODRES.2022.111108.
  • Donohue, M. E.; Rowe, A. K.; Kowalewski, E.; Hert, Z. L.; Karrick, C. E.; Randriamanandaza, L. J.; Zakamanana, F.; Nomenjanahary, S.; Andriamalala, R. Y.; Everson, K. M., et al. Significant Effects of Host Dietary Guild and Phylogeny in Wild Lemur Gut Microbiomes. ISME Commun. 2022, 2(1), 33. DOI: 10.1038/s43705-022-00115-6.
  • Forster, S. C.; Clare, S.; Beresfordjones, B. S.; Harcourt, K.; Notley, G.; Stares, M. D.; Kumar, N.; Soderholm, A. T.; Adoum, A.; Wong, H., et al. Identification of Gut Microbial Species Linked with Disease Variability in a Widely Used Mouse Model of Colitis. Nat. Microbiol. 2022, 7(4), 590–599. DOI: 10.1038/s41564-022-01094-z.
  • Behairi, S.; Baha, N.; Barakat, M.; Ortet, P.; Achouak, W.; Heulin, T.; Kaci, Y. Bacterial Diversity and Community Structure in the Rhizosphere of the Halophyte Halocnemum Strobilaceum in an Algerian Arid Saline Soil. Extremophiles. 2022, 26(2), 18. DOI: 10.1007/S00792-022-01268-X.
  • Ma, J. M.; Ma, K.; Liu, J. L.; Chen, N. N. Rhizosphere Soil Microbial Community Under Ice in a High-Latitude Wetland: Different Community Assembly Processes Shape Patterns of Rare and Abundant Microbes. Front. Microbiol. 2022, 13, 783371. DOI: 10.3389/FMICB.2022.783371.
  • Mori, A. S.; Isbell, F.; Seidl, R. β-Diversity, Community Assembly, and Ecosystem Functioning. Trends Ecol. Evol. 2018, 33(7), 549–564. DOI: 10.1016/j.tree.2018.04.012.
  • Chetcuti, J.; Kunin, W. E.; Bullock, J. M. Habitat Fragmentation Increases Overall Richness, but Not of Habitat-Dependent Species. Front Ecol. Evol. 2020, 8, 607619. DOI: 10.3389/FEVO.2020.607619.
  • Borges, S. L. C.; Pavao, D. C.; Elias, R. B.; Moura, M.; Ventura, M. A.; Silva, L. Taxonomic, Structural Diversity and Carbon Stocks in a Gradient of Island Forests. Sci. Rep. 2022, 12(1), 1038. DOI: 10.1038/s41598-022-05045-w.