1,437
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A review on extraction technique and immune-boosting properties of Moringa oleifera Lam

, , , , , , , , ORCID Icon, & ORCID Icon show all
Pages 2493-2508 | Received 06 Jun 2023, Accepted 05 Aug 2023, Published online: 29 Aug 2023

References

  • Vergara-Jimenez, M.; Almatrafi, M.; Fernandez, M. Bioactive Components in Moringa Oleifera Leaves Protect Against Chronic Disease. Antioxidants. 2017, 6(4), 91. DOI: 10.3390/antiox6040091.
  • Tzanova, M.; Atanasov, V.; Yaneva, Z.; Ivanova, D.; Dinev, T. Selectivity of Current Extraction Techniques for Flavonoids from Plant Materials. Processes. 2020, 8(10), 1222. DOI: 10.3390/pr8101222.
  • Chávez-González, M. L.; Sepúlveda, L.; Verma, D. K.; Luna-García, H. A.; Rodríguez-Durán, L. V.; Ilina, A.; Aguilar, C. N. Conventional and Emerging Extraction Processes of Flavonoids. Processes. 2020, 8(4), 434. DOI: 10.3390/pr8040434.
  • Nishiumi, S.; Miyamoto, S.; Kawabata, K.; Ohnishi, K.; Mukai, R.; Murakami, A.; Ashida, H.; Terao, J. Dietary Flavonoids as Cancer-Preventive and Therapeutic Biofactors (Scholar edition). Front. Biosci. 2011, 3(1), 1332–1362. DOI: 10.2741/229.
  • Hamed, Y.; Abdin, M.; Akhtar, H.; Chen, D.; Wan, P.; Chen, G.; Zeng, X. Extraction, Purification by Macrospores Resin and in vitro Antioxidant Activity of Flavonoids from Moringa oliefera Leaves. South African J. Bot. 2019, 124, 270–279. DOI: 10.1016/j.sajb.2019.05.006.
  • Vázquez-León, L. A.; Páramo-Calderón, D. E.; Robles-Olvera, V. J.; Valdés-Rodríguez, O. A.; Pérez-Vázquez, A.; García-Alvarado, M. A.; Rodríguez-Jimenes, G. C. Variation in Bioactive Compounds and Antiradical Activity of Moringa Oleifera Leaves: Influence of Climatic Factors, Tree Age, and Soil Parameters. Eur. Food Res. Technol. 2017, 243(9), 1593–1608. DOI: 10.1007/s00217-017-2868-4.
  • Lin, M.; Zhang, J.; Chen, X. Bioactive Flavonoids in Moringa Oleifera and Their Health-Promoting Properties. J. Funct. Foods. 2018, 47, 469–479. DOI: 10.1016/j.jff.2018.06.011.
  • Le Marchand, L. Cancer Preventive Effects of Flavonoids—A Review. Biomed. Pharmacother. 2002, 56(6), 296–301. DOI: 10.1016/s0753-3322(02)00186-5.
  • Batra, P.; Sharma, A. K. Anti-Cancer Potential of Flavonoids: Recent Trends and Future Perspectives. 3 Biotech. 2013, 3(6), 439–459. DOI: 10.1007/s13205-013-0117-5.
  • Owona, B. A.; Abia, W. A.; Moundipa, P. F. Natural Compounds Flavonoids as Modulators of Inflammasomes in Chronic Diseases. Int. Immunopharmacol. 2020, 84, 106498. DOI: 10.1016/j.intimp.2020.106498.
  • Routray, W.; Orsat, V. Microwave-Assisted Extraction of Flavonoids: A Review. Food Bioprocess. Technol. 2011, 5(2), 409–424. DOI: 10.1007/s11947-011-0573-z.
  • Vinatoru, M.; Mason, T.; Calinescu, I. Ultrasonically Assisted Extraction (UAE) and Microwave Assisted Extraction (MAE) of Functional Compounds from Plant Materials. TrAc Trends Anal. Chem. 2017, 97, 159–178. DOI: 10.1016/j.trac.2017.09.002.
  • Chemat, F.; E-Huma, Z.; Khan, M. K. Applications of Ultrasound in Food Technology: Processing, Preservation and Extraction. Ultrason. Sonochem. 2011, 18(4), 813–835. DOI: 10.1016/j.ultsonch.2010.11.023.
  • Dadi, D. W.; Emire, S. A.; Hagos, A. D.; Eun, J. B. Effect of Ultrasound-Assisted Extraction of Moringa Stenopetala Leaves on Bioactive Compounds and Their Antioxidant Activity. Food Technol. Biotechnol. 2019, 57(1), 77–86. DOI: 10.17113/ftb.57.01.19.5877.
  • Orsat, V.; Routray, W. Microwave-Assisted Extraction of Flavonoids. Water Extraction Of Bioactive Compounds. 2017, 221–244. DOI: 10.1016/b978-0-12-809380-1.00008-5.
  • Upadhyay, R.; Nachiappan, G.; Mishra, H. N. Ultrasound-Assisted Extraction of Flavonoids and Phenolic Compounds from Ocimum tenuiflorum Leaves. Food Sci. Biotechnol. 2015, 24(6), 1951–1958. DOI: 10.1007/s10068-015-0257-y.
  • Zahari, N. A. A. R.; Chong, G. H.; Abdullah, L. C.; Chua, B. L. Ultrasonic-Assisted Extraction (UAE) Process on Thymol Concentration from PlectranthusAmboinicus Leaves: Kinetic Modeling and Optimization. Processes. 2020, 8(3), 322. DOI: 10.3390/pr8030322.
  • Routray, W.; Orsat, V. Variation of Dielectric Properties of Aqueous Solutions of Ethanol and Acids at Various Temperatures with Low Acid Concentration Levels. Phys. Chem. Liq. 2013, 52(2), 209–232. DOI: 10.1080/00319104.2013.812022.
  • Bagade, S. B.; Patil, M. Recent Advances in Microwave Assisted Extraction of Bioactive Compounds from Complex Herbal Samples: A Review. Crit. Rev. Anal. Chem. 2019, 51(2), 138–149. DOI: 10.1080/10408347.2019.1686966.
  • Delazar, A.; Nahar, L.; Hamedeyazdan, S.; Sarker, S. D. Microwave-Assisted Extraction in Natural Products Isolation. Methods In Molecular Biology Natural Products Isolation. 2012, 89–115. DOI: 10.1007/978-1-61779-624-1_5.
  • Rodríguez-Pérez, C. 2016. Emerging Green Technologies for the Extraction of Phenolic Compounds from Medicinal Plants. Recent Progress In Medicinal Plants. 41, 81–104. Analytical and Processing Techniques
  • Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K. M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants. 2022, 11(19), 2623. DOI: 10.3390/plants11192623.
  • Teo, C. C.; Chong, W. P.; Ho, Y. S. Development and Application of Microwave-Assisted Extraction Technique in Biological Sample Preparation for Small Molecule Analysis. Metabolomics. 2013, 9(5), 1109–1128. DOI: 10.1007/s11306-013-0528-7.
  • Luque-Garcı́a, J.; Castro, M. L. Focused Microwave-Assisted Soxhlet Extraction: Devices and Applications. Talanta. 2004, 64(3), 571–577. DOI: 10.1016/j.talanta.2004.03.054.
  • Gharekhani, M.; Ghorbani, M.; RASOULNEJAD, N. 2022. Microwave-Assisted Extraction of Phenolic and Flavonoid Compounds from Eucalyptus Camaldulensis Dehn Leaves as Compared with Ultrasound-Assisted Extraction. Latin American Applied Research Pesquisaaplicadalatino americana = Investigaciónaplicadalatinoamericana. 42, 305–310.
  • Rodríguez-Pérez, C.; Mendiola, J.; Quirantes-Piné, R.; Ibáñez, E.; Segura-Carretero, A. Green Downstream Processing Using Supercritical Carbon Dioxide, CO2-Expanded Ethanol and Pressurized Hot Water Extractions for Recovering Bioactive Compounds from Moringa Oleifera Leaves. J. Supercrit. Fluids. 2016, 116, 90–100. DOI: 10.1016/j.supflu.2016.05.009.
  • Belo, Y. N.; Al-Hamimi, S.; Chimuka, L.; Turner, C. Ultrahigh-Pressure Supercritical Fluid Extraction and Chromatography of Moringa Oleifera and Moringa Peregrina Seed Lipids. Anal. Bioanal. Chem. 2019, 411(16), 3685–3693. DOI: 10.1007/s00216-019-01850-x.
  • Abhari, K.; Khaneghah, A. M. Alternative Extraction Techniques to Obtain, Isolate and Purify Proteins and Bioactive from Aquaculture and By-Products. In Advances in Food and Nutrition Research Aquaculture and By-Products: Challenges and Opportunities in the Use of Alternative Protein Sources and Bioactive Compounds, 2020; pp. 35–52. DOI: 10.1016/bs.afnr.2019.12.004.
  • Dinesha, B. L.; Nidoni, U.; Ramachandra, C. T.; Naik, N. Qualitative and Quantitative Analysis of Bioactive Compounds from Supercritical Fluid and Soxhlet Extracted Moringa (Moringa Oleifera Lam.) Seed Kernel Oil. Res. J. Agric. Sci. 2016, 7, 339–343.
  • Dinesha, B. L.; Nidoni, U.; Ramachandra, C. T.; Naik, N.; Sankalpa, K. Effect of Extraction Methods on Physicochemical, Nutritional, Antinutritional, Antioxidant and Antimicrobial Activity of Moringa (Moringa Oleifera Lam.) Seed Kernel Oil. J. Appl. Nat. Sci. 2018, 10(1), 287–295. DOI: 10.31018/jans.v10i1.1619.
  • Herrero, M.; Cifuentes, A.; Ibanez, E. Sub- and Supercritical Fluid Extraction of Functional Ingredients from Different Natural Sources: Plants, Food-By-Products, Algae and microalgaeA Review. Food Chem. 2006, 98(1), 136–148. DOI: 10.1016/j.foodchem.2005.05.058.
  • Karabegović, I.; Nikolova, M.; Veličković, D.; Stojičević, S. S.; Veljković, V. B.; Lazić, M. L. Comparison of Antioxidant and Antimicrobial Activities of Methanolic Extracts of the Artemisia sp. Recovered by Different Extraction Techniques. Chin. J. Chem. Eng. 2011, 19(3), 504–511. DOI: 10.1016/S1004-9541(11)60013-X.
  • Rodríguez De Luna, S. L.; Ramírez-Garza, R. E.; Serna Saldívar, S. O. Environmentally Friendly Methods for Flavonoid Extraction from Plant Material: Impact of Their Operating Conditions on Yield and Antioxidant Properties. Sci. World J. 2020, 2020, 1–38. DOI: 10.1155/2020/6792069.
  • Panche, A. N.; Diwan, A. D.; Chandra, S. R. Flavonoids: An Overview. J. Nutr. Sci. 2016, 5. DOI: 10.1017/jns.2016.41.
  • Bagwe-Parab, S.; Kaur, G.; Buttar, H. S.; Tuli, H. S. Absorption, Metabolism, and Disposition of Flavonoids and Their Role in the Prevention of Distinctive Cancer Types. Current Aspects Of Flavonoids: Their Role In Cancer Treatment. 2019, 125–137. DOI: 10.1007/978-981-13-5874-6_6.
  • Noor, N.; Gani, A.; Gani, A.; Shah, A.; Ashraf, Z. U. Exploitation of Polyphenols and Proteins Using Nanoencapsulation for Anti-Viral and Brain Boosting Properties – Evoking a Synergistic Strategy to Combat COVID-19 Pandemic. Int. J. Biol. Macromol. 2021, 180, 375–384. DOI: 10.1016/j.ijbiomac.2021.03.028.
  • Hošek, J.; Šmejkal, K. Flavonoids as Anti-Inflammatory Agents. Compendium Of Inflammatory Diseases. 2016, 482–497. DOI: 10.1007/978-3-7643-8550-7_19.
  • Spencer, J. P. Food for Thought: The Role of Dietary Flavonoids in Enhancing Human Memory, Learning and Neuro-Cognitive Performance. Proc. Nutr. Soc. 2008, 67(2), 238–252. DOI: 10.1017/s0029665108007088.
  • Spagnuolo, C.; Moccia, S.; Russo, G. L. Anti-Inflammatory Effects of Flavonoids in Neurodegenerative Disorders. Eur. J. Med. Chem. 2018, 153, 105–115. DOI: 10.1016/j.ejmech.2017.09.001.
  • Koosha, S.; Alshawsh, M. A.; Looi, C. Y.; Seyedan, A.; Mohamed, Z. An Association Map on the Effect of Flavonoids on the Signaling Pathways in Colorectal Cancer. Int. J. Med. Sci. 2016, 13(5), 374–385. DOI: 10.7150/ijms.14485.
  • Maleki, S. J.; Crespo, J. F.; Cabanillas, B. Anti-Inflammatory Effects of Flavonoids. Food Chem. 2019, 299, 125124. DOI: 10.1016/j.foodchem.2019.125124.
  • Abotaleb, M.; Samuel, S.; Varghese, E.; Varghese, S.; Kubatka, P.; Liskova, A.; Büsselberg, D. Flavonoids in Cancer and Apoptosis. Cancers. 2018, 11(1), 28. DOI: 10.3390/cancers11010028.
  • Khan, A.; Ikram, M.; Hahm, J. R.; Kim, M. O. Antioxidant and Anti-Inflammatory Effects of Citrus Flavonoid Hesperetin: Special Focus on Neurological Disorders. Antioxidants. 2020, 9(7), 609. DOI: 10.3390/antiox9070609.
  • Pan, M.; Lai, C.; Ho, C. Anti-Inflammatory Activity of Natural Dietary Flavonoids. Food Funct. 2010, 1(1), 15. DOI: 10.1039/c0fo00103a.
  • Zeinali, M.; Rezaee, S. A.; Hosseinzadeh, H. An Overview on Immunoregulatory and Anti-Inflammatory Properties of Chrysin and Flavonoids Substances. Biomed. Pharmacother. 2017, 92, 998–1009. DOI: 10.1016/j.biopha.2017.06.003.
  • Suganthy, N.; Devi, K. P.; Nabavi, S. F.; Braidy, N.; Nabavi, S. M. Bioactive Effects of Quercetin in the Central Nervous System: Focusing on the Mechanisms of Actions. Biomed. Pharmacother. 2016, 84, 892–908. DOI: 10.1016/j.biopha.2016.10.011.
  • Matias, I.; Buosi, A. S.; Gomes, F. C. Functions of Flavonoids in the Central Nervous System: Astrocytes as Targets for Natural Compounds. Neurochem. Int. 2016, 95, 85–91. DOI: 10.1016/j.neuint.2016.01.009.
  • Pérez-Cano, F.; Castell, M. Flavonoids, Inflammation and Immune System. Nutrients. 2016, 8(10), 659. DOI: 10.3390/nu8100659.
  • Diniz, T. C.; Silva, J. C.; Lima-Saraiva, S. R. G. D.; Ribeiro, F. P. R. D. A.; Pacheco, A. G. M.; de Freitas, R. M.; Quintans-Júnior, L. J.; Quintans, J. D. S. S.; Mendes, R. L.; Almeida, J. R. G. D. S. The Role of Flavonoids on Oxidative Stress in Epilepsy. Oxid. Med. Cell. Longev. 2015, 2015, 1–9. DOI: 10.1155/2015/171756.
  • Rendeiro, C.; Rhodes, J. S.; Spencer, J. P. The Mechanisms of Action of Flavonoids in the Brain: Direct versus Indirect Effects. Neurochem. Int. 2015, 89, 126–139. DOI: 10.1016/j.neuint.2015.08.002.
  • Flanagan, E.; Müller, M.; Hornberger, M.; Vauzour, D. Impact of Flavonoids on Cellular and Molecular Mechanisms Underlying Age-Related Cognitive Decline and Neurodegeneration. Curr. Nutr. Rep. 2018, 7(2), 49–57. DOI: 10.1007/s13668-018-0226-1.
  • Al-Ishaq, R. K.; Abotaleb, M.; Kubatka, P.; Kajo, K.; Büsselberg, D. Flavonoids and Their Anti-Diabetic Effects: Cellular Mechanisms and Effects to Improve Blood Sugar Levels. Biomolecules. 2019, 9(9), 430. DOI: 10.3390/biom9090430.
  • Zeka, K.; Ruparelia, K.; Arroo, R.; Budriesi, R.; Micucci, M. Flavonoids and Their Metabolites: Prevention in Cardiovascular Diseases and Diabetes. Diseases. 2017, 5(3), 19. DOI: 10.3390/diseases5030019.
  • Mahmoud, A. M.; Bautista, R. J.; Sandhu, M. A.; Hussein, O. E. Beneficial Effects of Citrus Flavonoids on Cardiovascular and Metabolic Health. Oxid. Med. Cell. Longev. 2019, 2019, 1–19. DOI: 10.1155/2019/5484138.
  • Peluso, I.; Miglio, C.; Morabito, G.; Ioannone, F.; Serafini, M. Flavonoids and Immune Function in Human: A Systematic Review. Crit. Rev. Food Sci. Nutr. 2014, 55(3), 383–395. DOI: 10.1080/10408398.2012.656770.
  • Jasprica, I.; Dumic, J.; Mornar, A.; Medic-Šaric, M. Immunomodulatory Effects of Flavonoids in vitro. Planta. Med. 2006, 72(11). DOI: 10.1055/s-2006-949979.
  • Martínez, G.; Mijares, M. R.; Sanctis, J. B. Effects of Flavonoids and Its Derivatives on Immune Cell Responses. Recent Pat. Inflamm. Allergy Drug Discov. 2019, 13(2), 84–104. DOI: 10.2174/1872213x13666190426164124.