2,838
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Valorization of the phytochemical profile, nutritional composition, and therapeutic potentials of garlic peel: a concurrent review

, , ORCID Icon, , , , , , , , , , , , , , & show all
Pages 2642-2655 | Received 19 Jun 2023, Accepted 04 Aug 2023, Published online: 04 Sep 2023

References

  • Suleria, H. A. R.; Butt, M. S.; Khalid, N.; Sultan, S.; Raza, A.; Aleem, M.; Abbas, M. Garlic (Allium Sativum): Diet Based Therapy of 21st Century–A Review. Asian Pac. J. Trop. Dis. 2015, 5(4), 271–278. https://www.academia.edu/32372567/Garlic_Allium_sativum_diet_based_therapy_of_21st_century_a_review.
  • Abiri, R.; Abdul-Hamid, H.; Sytar, O.; Abiri, R.; Bezerra de Almeida, E., Jr; Sharma, S. K.; Bulgakov, V. P.; Arroo, R. R. J.; Malik, S. A Brief Overview of Potential Treatments for Viral Diseases Using Natural Plant Compounds: The Case of SARS-Cov. Molecules. 2021, 26(13), 3868. DOI: 10.3390/molecules26133868.
  • Olimov, N. Q “Author’s Abstract for the Doctoral degree” Development and Standardization of Technology of Drugs Based on Garlic. “T. 2011. (In Uzbek). https://www.giirj.com/index.php/giirj/article/view/3629.
  • Kallel, F.; Ellouz Chaabouni, S. Perspective of Garlic Processing Wastes as Low-Cost Substrates for Production of High-Added Value Products: A Review. Environ. Prog. Sustain. Energy. 2017, 36(6), 1765–1777. DOI: 10.1002/ep.12649.
  • Abotaleb, M.; Liskova, A.; Kubatka, P.; Büsselberg, D. Therapeutic Potential of Plant Phenolic Acids in the Treatment of Cancer. Biomolecules. 2020, 10(2), 221. Article. DOI: 10.3390/biom10020221.
  • Lamri, M.; Bhattacharya, T.; Boukid, F.; Chentir, I.; Dib, A. L.; Das, D.; Djenane, D.; Gagaoua, M. Nanotechnology As A Processing And Packaging Tool To Improve Meat Quality And Safety. Foods. 2021, 10(11), 2633.
  • Hashmi, M. S.; Akhtar, S.; Ismail, T. Biochemical Characterization of Vegetables Wastes and Development of Functional Bread. J. Microbiol. Biotechnol. Food Sci. 2021, 10(4), 691–696. DOI: 10.15414/JMBFS.2021.10.4.691-696.
  • Kallel, F.; Ellouz Chaabouni, S. Perspective of Garlic Processing Wastes as Low‐Cost Substrates for Production of High‐Added Value Products: A Review. Environ. Prog. Sustain. Energy. 2017, 36(6), 1765–1777. DOI: 10.1002/ep.12649.
  • Chaudhary, B. U.; Lingayat, S.; Banerjee, A. N.; Kale, R. D. Development of Multifunctional Food Packaging Films Based on Waste Garlic Peel Extract and Chitosan. Int. J. Biol. Macromol. 2021, 192, 479–490. DOI: 10.1016/j.ijbiomac.2021.10.031.
  • Ichikawa, M.; Ryu, K.; Yoshida, J.; Ide, N.; Kodera, Y.; Sasaoka, T.; Rosen, R. T. Identification of Six Phenylpropanoids from Garlic Skin as Major Antioxidants. J. Agric. Food Chem. 2003, 51(25), 7313–7317. DOI: 10.1021/jf034791a.
  • Carreón-Delgado, D. F.; Hernández-Montesinos, I. Y.; Rivera-Hernández, K. N.; Del Sugeyrol Villa-Ramírez, M.; Ochoa-Velasco, C. E.; Ramírez-López, C. Evaluation of Pretreatments and Extraction Conditions on the Antifungal and Antioxidant Effects of Garlic (Allium Sativum) Peel Extracts. Plants. 2023, 12(1), 217. DOI: 10.3390/plants12010217.
  • Fortunata, S. A.; Rahmawati, D.; Andika, D. Evaluation of Phytochemical Activities of Aqueous and Ethanolic Garlic Peel Extract. J Fun Food And Nutraceu. 2019, 1(1), 41–46. DOI: 10.33555/JFFN.V1I1.20.
  • Farhat, Z.; Hershberger, P. A.; Freudenheim, J. L.; Mammen, M. J.; Hageman Blair, R.; Aga, D. S.; Mu, L. Types of Garlic and Their Anticancer and Antioxidant Activity: A Review of the Epidemiologic and Experimental Evidence. Eur. J. Nutr. 2021, 60, 10.1007/s00394-021-02482–7. DOI: 10.1007/s00394-021-02482-7.
  • Tresina, P. S.; Selvam, M. S.; Doss, A.; Mohan, V. R. Antidiabetic Bioactive Natural Products from Medicinal Plants. Studi. Nat. Prod. Chem. 2022, 75, 75–118.
  • Reyes, B. A.; Dufourt, E. C.; Ross, J.; Warner, M. J.; Tanquilut, N. C.; Leung, A. B. Selected Phyto and Marine Bioactive Compounds: Alternatives for the Treatment of Type 2 Diabetes. Studi. Nat. Prod. Chem. 2018, 55, 111–143.
  • Ullah, A.; Munir, S.; Badshah, S. L.; Khan, N.; Ghani, L.; Poulson, B. G.; Emwas, A.-H.; Jaremko, M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules. 2020, 25(22), 5243. DOI: 10.3390/molecules25225243.
  • Lotito, S. B.; Zhang, W. J.; Yang, C. S.; Crozier, A.; Frei, B. Metabolic Conversion of Dietary Flavonoids Alters Their Anti-Inflammatory and Antioxidant Properties. Free Radical Biol. Med. 2011, 51(2), 454–463. DOI: 10.1016/j.freeradbiomed.2011.04.032.
  • Kiokias, S.; Oreopoulou, V. A Review of the Health Protective Effects of Phenolic Acids Against a Range of Severe Pathologic Conditions (Including Coronavirus-Based Infections). Molecules. 2021, 26(17), 5405. DOI: 10.3390/molecules26175405.
  • Khanum, F.; Anilakumar, K. R.; Viswanathan, K. R. Anticarcinogenic Properties of Garlic: A Review. Crit. Rev. Food Sci. Nutr. 2004, 44(6), 479–488. DOI: 10.1080/10408690490886700.
  • Chauhan, N. B.; Mehla, J. Ameliorative Effects of Nutraceuticals in Neurological Disorders. Bioactive Nutrac. Nutr. Diet. Suppl. Brain Dise. 2015, 245–260.
  • Riaz, M. N. Soy Applications in Food; CRC press, 2005.
  • Kallel, F.; Driss, D.; Chaari, F.; Belghith, L.; Bouaziz, F.; Ghorbel, R.; Chaabouni, S. E. Garlic (Allium Sativum L.) Husk Waste as a Potential Source of Phenolic Compounds: Influence of Extracting Solvents on Its Antimicrobial and Antioxidant Properties. Ind. Crops Prod. 2014, 62, 34–41. DOI: 10.1016/j.indcrop.2014.07.047.
  • Zhivkova, V. Determination of Nutritional and Mineral Composition of Wasted Peels from Garlic, Onion and Potato. Carpathian J. Food Sci. Technol. 2021, 134–146. DOI: 10.34302/crpjfst/2021.13.3.11.
  • Nagorao, S. D. Characterization of garlic skin and its evaluation as biomaterial. Doctoral dissertation, 2014.
  • Singiri, J. R.; Swetha, B.; Ben-Natan, A.; Grafi, G. What Worth the Garlic Peel. Int. J. Mol. Sci. 2022, 23(4), 2126. DOI: 10.3390/ijms23042126.
  • Roy, S.; Priyadarshi, R.; Łopusiewicz, Ł.; Biswas, D.; Chandel, V.; Rhim, J. W. Recent Progress in Pectin Extraction, Characterization, and Pectin-Based Films for Active Food Packaging Applications: A Review. Int. J. Biol. Macromol. 2023, 239, 124248. DOI: 10.1016/j.ijbiomac.2023.124248.
  • Beato, V. M.; Orgaz, F.; Mansilla, F.; Montaño, A. Changes in Phenolic Compounds in Garlic (Allium Sativum L.) Owing to the Cultivar and Location of Growth. Plant Foods Human Nutr. 2011, 66(3), 218–223. DOI: 10.1007/s11130-011-0236-2.
  • Malhotra, S. K. Nigella. In Handbook of Herbs and Spices. Woodhead Publishing, 2012; pp. 391–416. DOI: 10.1533/9780857095688.391.
  • Vian, M. A.; Fabiano-Tixier, A. S.; Dangles, M.; Elmaataoui, O.; Chemat, F.; Chemat, F. A Remarkable Influence of Microwave Extraction: Enhancement of Antioxidant Activity of Extracted Onion Varieties. Food Chem. 2011, 127(4), 1472–1480. DOI: 10.1016/j.foodchem.2011.01.112.
  • Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L. P.; Mushayamaha, T.; Thomas, P. D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic. Acids Res. 2021, 49(D1), D394–D403. DOI: 10.1093/nar/gkaa1106.
  • Mamatkulova, O. O.; Isakov, H.; Jamolova, H. M. The Importance of Garlic in the Healing of Various Diseases in Humans. Folk. medi magaz. 2021, 1(6), 22–24. (In Uzbek).
  • Usubboev, M. U.; Olimov, N. Q.; Aminov, S. H.; Normurodov, A. S. 2004. Development of a Tablet Drug from Garlic Powder. J Pharm. 3, 50–51. (In Uzbek)
  • Sabikun, N.; Bakhsh, A.; Rahman, M. S.; Hwang, Y. H.; Joo, S. T. Volatile and Nonvolatile Taste Compounds and Their Correlation with Umami and Flavor Characteristics of Chicken Nuggets Added with Milkfat and Potato Mash. Food Chem. 2021, 343, 128499. DOI: 10.1016/j.foodchem.2020.128499.
  • Houston, M. The Role of Nutrition and Nutraceutical Supplements in the Treatment of Hypertension. World J Cardiol. 2014, 6(2), 38. DOI: 10.4330/wjc.v6.i2.38.
  • Gröber, U.; Schmidt, J.; Kisters, K. Magnesium in Prevention and Therapy. Nutrients. 2015, 7(9), 8199–8226. DOI: 10.3390/nu7095388.
  • Nurmilah, S.; Cahyana, Y.; Utama, G. L.; Aït-Kaddour, A. Strategies to Reduce Salt Content and Its Effect on Food Characteristics and Acceptance: A Review. Foods. 2022, 11(19), 3120. DOI: 10.3390/foods11193120.
  • Bhatwalkar, S. B.; Mondal, R.; Krishna, S. B. N.; Adam, J. K.; Govender, P.; Anupam, R. Antibacterial Properties of Organosulfur Compounds of Garlic (Allium Sativum). Front. Microbiol. 2021, 12, 613077. DOI: 10.3389/fmicb.2021.613077.
  • Mishra, S.; Patel, M. Role of Nutrition on Immune System During COVID-19 Pandemic. J. Food Nutr Health. 2020, 3(2).
  • Castellanos-Gutiérrez, A.; Sánchez-Pimienta, T. G.; Carriquiry, A.; da Costa, T. H.; Ariza, A. C. Higher Dietary Magnesium Intake is Associated with Lower Body Mass Index, Waist Circumference and Serum Glucose in Mexican Adults. Nutr. J. 2018, 17(1), 1–8. DOI: 10.1186/s12937-018-0422-2.
  • Rouf, R.; Uddin, S. J.; Sarker, D. K.; Islam, M. T.; Ali, E. S.; Shilpi, J. A.; Sarker, S. D., Tiralongo, E., Sarker, S D. Antiviral Potential of Garlic (Allium Sativum) and Its Organosulfur Compounds: A Systematic Update of Pre-Clinical and Clinical Data. Trends In Food Science & Technology. 2020, 104, 219–234. DOI: 10.1016/j.tifs.2020.08.006.
  • Pourahmad, J.; Salami, M.; Zarei, M. H. Comparative Toxic Effect of Bulk Copper Oxide (CuO) and CuO Nanoparticles on Human Red Blood Cells. Biol. Trace Elem. Res. 2023, 201(1), 149–155. DOI: 10.1007/s12011-022-03149-y.
  • Tang, Z.; Kong, N.; Ouyang, J.; Feng, C.; Kim, N. Y.; Ji, X.; Wang, C.; Farokhzad, O. C.; Zhang, H.; Tao, W. Phosphorus Science-Oriented Design and Synthesis of Multifunctional Nanomaterials for Biomedical Applications. Matter. 2020, 2(2), 297–322. DOI: 10.1016/j.matt.2019.12.007.
  • Habibian, M.; Sadeghi, G.; Ghazi, S.; Moeini, M. M. Selenium as a Feed Supplement for Heat-Stressed Poultry: A Review. Biol. Trace Elem. Res. 2015, 165, 183–193. DOI: 10.1007/s12011-015-0275-x.
  • Kumar, K. S.; Paswan, S.; Srivastava, S. Tomato-A Natural Medicine and Its Health Benefits. J. Pharmacogn. Phytochem. 2012, 1(1), 33–43.
  • Exley, C. The Toxicity of Aluminium in Humans. Morphologie. 2016, 100(329), 51–55. DOI: 10.1016/j.morpho.2015.12.003.
  • Nielsen, F. H. Boron in Human and Animal Nutrition. Plant Soil. 1997, 193(1–2), 199–208. DOI: 10.1023/A:1004276311956.
  • Putra, N. R.; Aziz, A. H. A.; Faizal, A. N. M.; Che Yunus, M. A. Methods and Potential in Valorization of Banana Peels Waste by Various Extraction Processes: In Review. Sustainability. 2022, 14(17), 10571. DOI: 10.3390/su141710571.
  • Shang, A.; Cao, S.-Y.; Xu, X.-Y.; Gan, R.-Y.; Tang, G.-Y.; Corke, H.; Mavumengwana, V.; Li, H.-B. Bioactive Compounds and Biological Functions of Garlic (Allium Sativum L). Foods. 2019, 8(7), 246. Article. DOI: 10.3390/foods8070246.
  • Kanatt, S. R.; Rao, M. S.; Chawla, S. P.; Sharma, A. Active Chitosan–Polyvinyl Alcohol Films with Natural Extracts. Food. Hydrocoll. 2012, 29(2), 290–297. DOI: 10.1016/j.foodhyd.2012.03.005.
  • Lyngdoh, J.; Ray, S. Valorization of Garlic Peel as a Potential Ingredient for the Development of ValueAdded Rice Based Snack Product Pukhelein. Agri And Food Sci. Res. 2022, 9(2), 50–58. DOI: 10.20448/aesr.v9i2.4110.
  • Lyngdoh, J.; Ray, S. Valorization of Garlic Peel as a Potential Ingredient for the Development of ValueAdded Rice Based Snack Product Pukhelein. Agri And Food Sci. Res. 2022, 9, 50–58. DOI: 10.20448/aesr.v9i2.4110.
  • Santhosha, S. G.; Jamuna, P.; Prabhavathi, S. N. Bioactive Components of Garlic and Their Physiological Role in Health Maintenance: A Review. Food Biosci. 2013, 3, 59–74. DOI: 10.1016/j.fbio.2013.07.001.
  • Phan, A. D. T.; Netzel, G.; Chhim, P.; Netzel, M. E.; Sultanbawa, Y. Phytochemical Characteristics and Antimicrobial Activity of Australian Grown Garlic (Allium Sativum L.) Cultivars. Foods (Basel, Switzerland). 2019, 8(9), 358. DOI: 10.3390/foods8090358.
  • Ejaz, S.; Chekarova, I.; Cho, J. W.; Lee, S. Y.; Ashraf, S.; Lim, C. W. Effect of Aged Garlic Extract on Wound Healing: A New Frontier in Wound Management. Drug Chem. Toxicol. 2009, 32(3), 191–203. DOI: 10.1080/01480540902862236.
  • Anantharaju, P. G.; Gowda, P. C.; Vimalambike, M. G.; Madhunapantula, S. V. An Overview on the Role of Dietary Phenolics for the Treatment of Cancers. Nutr. J. 2016, 15(1), 1–16. DOI: 10.1186/s12937-016-0217-2.
  • Wu, Y.; Wu, Z.-R.; Chen, P.; Yang, L.; Deng, W.-R.; Wang, Y.-Q.; Li, H.-Y. Effect of the Tyrosinase Inhibitor (S)-N-Trans-Feruloyloctopamine from Garlic Skin on Tyrosinase Gene Expression and Melanine Accumulation in Melanoma Cells. Bioorg. Med. Chem. Lett. 2015, 25(7), 1476–1478. DOI: 10.1016/j.bmcl.2015.02.028.
  • Thomson, M.; Al-Amin, Z. M.; Al-Qattan, K. K.; Shaban, L. H.; Ali, M. Anti-Diabetic and Hypolipidaemic Properties of Garlic (Allium Sativum) in Streptozotocin-Induced Diabetic Rats. DOAJ. 2007, 15(3), 108–115.
  • Lolok, N.; Mashar, H. M.; Annah, I.; Saleh, A.; Yuliastri, W. O.; Isrul, M. Antidiabetic Effect of the Combination of Garlic Peel Extract (Allium sativum) and Onion Peel (Allium cepa) in Rats with Oral-Glucose Tolerance Method. Res. J. Pharm. Technol. 2019, 12(5), 2153–2156. DOI: 10.5958/0974-360X.2019.00357.3.
  • Banerjee, S. K.; Maulik, S. K. Effect of Garlic on Cardiovascular Disorders: A Review. Nutr. J. 2002, 1(1), 4. DOI: 10.1186/1475-2891-1-4.
  • Bayan, L.; Koulivand, P. H.; Gorji, A. Garlic: A Review of Potential Therapeutic Effects. Avicenna J. Phytomed. 2014, 4(1), 1.
  • Pai, S. T.; Platt, M. W. Antifungal Effects of Allium Sativum (Garlic) Extract Against the Aspergillus Species Involved in Otomycosis. Lett Appl. Microbiol. 1995, 20(1), 14–18. DOI: 10.1111/j.1472-765X.1995.tb00397.x.
  • Houshmand, B.; Mahjour, F.; Dianat, O. Antibacterial Effect of Different Concentrations of Garlic (Allium Sativum) Extract on Dental Plaque Bacteria. Indian J. Dental Res. 2013, 24(1), 71. DOI: 10.4103/0970-9290.114957.
  • Zain Al-Abdeen, S. S.; Abdullah, I. T.; Al-Salihi, S. S. The Synergism Effect of Aqueous Garlic Extract and Ciprofloxacin Against Some Multi-Resistant Bacteria. J. Microbiol. Biotech. Res. 2013, 3(3).
  • Karuppiah, P.; Rajaram, S. Antibacterial Effect of Allium Sativum Cloves and Zingiber Officinale Rhizomes Against Multiple-Drug Resistant Clinical Pathogens. Asian Pac. J. Trop. Biomed. 2012, 2(8), 597–601. DOI: 10.1016/S2221-1691(12)60104-X.
  • Dini, C.; Fabbri, A.; Geraci, A. The Potential Role of Garlic (Allium Sativum) Against the Multi-Drug Resistant Tuberculosis Pandemic: A Review. Annali. dell’Istituto superiore di sanità. 2011, 47, 465–473. DOI: 10.4415/ANN_11_04_18.
  • Tsai, Y.; Cole, L. L.; Davis, L. E.; Lockwood, S. J.; Simmons, V.; Wild, G. C. Antiviral Properties of Garlic: In vitro Effects on Influenza B, Herpes Simplex and Coxsackie Viruses. Planta. med. 1985, 51(5), 460–461. DOI: 10.1055/s-2007-969553.
  • Majdalawieh, A. F.; Carr, R. I.; Ingle, D. L. Anti-Inflammatory and Anti-Allergic Properties of Garlic Constituent Compounds: A Review. Food Funct. 2017, 8(3), 935–948. DOI: 10.1039/c6fo01763k.
  • Park, Y. K.; Kim, J. S.; Kang, M. H.; Lee, H. S. Garlic (Allium Sativum L.) Peel Extract Attenuates Inflammation and Improves Insulin Sensitivity in High Fat Diet-Induced Obese Mice. Nutr. Res. Pract. 2013, 7(6), 465–471.
  • Borlinghaus, J.; Albrecht, F.; Gruhlke, M.; Nwachukwu, I.; Slusarenko, A. J. Allicin: Chemistry and Biological Properties. Molecules. 2014, 19(8), 12591–12618. DOI: 10.3390/molecules190812591.
  • Kim, J. Y.; Kwon, O. Garlic Intake and Cancer Risk: An Analysis Using the Food and Drug Administration’s Evidence-Based Review System for the Scientific Evaluation of Health Claims. Am. J. Clin. Nutr. 2009, 89(1), 257–264. DOI: 10.3945/ajcn.2008.26142.
  • Arreola, R.; Quintero-Fabián, S.; López-Roa, R. I.; Flores-Gutiérrez, E. O.; Reyes-Grajeda, J. P.; Carrera-Quintanar, L.; Ortuño-Sahagún, D. Immunomodulation and Anti-Inflammatory Effects of Garlic Compounds. J. Immunol. Res. 2015, 2015, 1–13. DOI: 10.1155/2015/401630.
  • Rahman, K. Historical Perspective on Garlic and Cardiovascular Disease. J. Nutr. 2001, 131(3s), 977S–979S. DOI: 10.1093/jn/131.3.977S.
  • Qu, Z.; Mossine, V. V.; Cui, J.; Sun, G. Y.; Gu, Z. Protective Effects of AGE and Its Components on Neuroinflammation and Neurodegeneration. Neuromole. Med. Sep, 2016, 18(3), 474–482. DOI: 10.1007/s12017-016-8410-1. Epub 2016 Jun 4. PMID: 27263111
  • Hadi, H. A.; Carr, C. S.; Al Suwaidi, J. Endothelial Dysfunction: Cardiovascular Risk Factors, Therapy, and Outcome. Vasc. Health Risk Manag. 2005, 1(3), 183.
  • Hazzaa, S. M.; Abdelaziz, S. A. M.; Abd Eldaim, M. A.; Abdel-Daim, M. M.; Elgarawany, G. E. Neuroprotective Potential of Allium Sativum Against Monosodium Glutamate-Induced Excitotoxicity: Impact on Short-Term Memory, Gliosis, and Oxidative Stress. Nutrients. Apr 10 2020, 12(4), 1028. PMID: 32290031; PMCID: PMC7230314. DOI: 10.3390/nu12041028
  • Thach, N. A. Investigation of the Effects of Extraction Temperature and Time on Bioactive Compounds Content from Garlic (Allium Sativum L.) Husk. Front. Sustain. Food Syst. 2022, 6, 1004281. DOI: 10.3389/fsufs.2022.1004281.
  • Kosuge, Y. Neuroprotective Mechanisms of S-Allyl-L-Cysteine in Neurological Disease. Exp. Ther. Med. Feb, 2020, 19(2), 1565–1569. DOI: 10.3892/etm.2019.8391. Epub 2019 Dec 27. PMID: 32010340; PMCID: PMC6966174
  • Huang, D. D.; Shi, G.; Jiang, Y.; Yao, C.; Zhu, C. A Review On The Potential Of Resveratrol In Prevention And Therapy Of Diabetes And Diabetic Complications. Biomed. Pharmacother. 2020, 125(2020), 109767.
  • Nagai, K.; Tani, Y.; Nagai, K.; Sahara, M.; Mitsuishi, C.; Togawa, Y.; Nakano, T.; Yamaide, F.; Ohno, H.; Shimojo, N. Neuroprotective Effects of Aged Garlic Extract and Its Constituents on Neuronal Cells. Nutrients. 2019, 11(9), 2125. DOI: 10.3390/nu11092118.
  • Rameshrad, M.; Hosseinzadeh, H. Toxicology Effects of Garlic Extract and Garlic-Derived Organosulfur Compounds. Food. Chem. Toxicol. 2019, 123, 423–433.
  • Yin, J.; Ren, W.; Huang, X.; Deng, J.; Li, T.; Yin, Y. Potential Mechanisms Connecting Purine Metabolism and Cancer Therapy. Front. immunol. 2018, 9, 1697.