996
Views
0
CrossRef citations to date
0
Altmetric
Articles

Combinations of mild chemical and bacterial pretreatment for improving enzymatic saccharification of corn stover

, &
Pages 598-608 | Received 04 Feb 2022, Accepted 09 Aug 2022, Published online: 10 Sep 2022

References

  • Shen XJ, Sun RC. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr Polym. 2021;261:117884.
  • Upton BM, Kasko AM. Strategies for the conversion of lignin to high-value polymeric materials: review and perspective. Chem Rev. 2016;116(4):2275–2306.
  • Zhang ZR, Song JL, Han BX. Catalytic transformation of lignocellulose into chemicals and fuel products in ionic liquids. Chem Rev. 2017;117(10):6834–6880.
  • Ennaert T, Van Aelst J, Dijkmans J, et al. Potential and challenges of zeolite chemistry in the catalytic conversion of biomass. Chem Soc Rev. 2016;45(3):584–611.
  • Rinaldi R, Jastrzebski R, Clough MT, et al. Paving the way for lignin valorisation: recent advances in bioengineering, biorefining and catalysis. Angew Chem Int Ed Engl. 2016;55(29):8164–8215.
  • Straathof AJJ. Transformation of biomass into commodity chemicals using enzymes or cells. Chem Rev. 2014;114(3):1871–1908.
  • Lynd LR, Elamder RT, Wyman CE. Likely features and costs of mature biomass ethanol technology. Appl Biochem Biotechnol. 1996;57-58(1):741–761.
  • Wang ZC, He XJ, Yan LM, et al. Enhancing enzymatic hydrolysis of corn stover by twin-screw extrusion pretreatment. Ind Crops Prod. 2020;143:111960.
  • Sun FH, Li J, Yuan YX, et al. Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. Int Biodeter Biodegrad. 2011;65:934–938.
  • Yang L, Ru Y, Xu S, et al. Features correlated to improved enzymatic digestibility of corn stover subjected to alkaline hydrogen peroxide pretreatment. Bioresour Technol. 2021;325:124688.
  • Sanchez C. Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv. 2009;27:185–194.
  • Dar MA, Shaikh AA, Pawar KD, et al. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochem. 2018;73:142–153.
  • Mishra V, Jana AK, Jana MM, et al. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresour Technol. 2017;236:49–59.
  • Xu C, Su X, Wang J, et al. Characteristics and functional bacteria in a microbial consortium for rice straw lignin-degrading. Bioresour Technol. 2021;331:125066.
  • Kumar S, Dheeran P, Singh SP, et al. Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse. Renew Energ. 2015;83:850–858.
  • Pinto PA, Dias AA, Fraga I, et al. Influence of ligninolytic enzymes on straw saccharification during fungal pretreatment. Bioresour Technol. 2012;111:261–267.
  • Chen Y, Wang YY, Xu Z, et al. Enhanced humification of maize straw and canola residue during composting by inoculating phanerochaete chrysosporium in the cooling period. Bioresour Technol. 2019;293:122075.
  • Grigorevski-Lima AL, de Oliveira MMQ, do Nascimento RP, et al. Production and partial characterization of cellulases and xylanases from Trichoderma atroviride 676 using lignocellulosic residual biomass. Appl Biochem Biotechnol. 2013;169(4):1373–1385.
  • Su YJ, Yu XX, Sun Y, et al. An efficient strategy for enhancing enzymatic saccharification with delignified fungus Myrothecium verrucaria and solid acid. Ind Crops Prod. 2018;121:396–404.
  • Wang Q-F, Niu L-L, Jiao J, et al. Degradation of lignin birch sawdust treated by a novel Myrothecium verrucaria coupled with ultrasound assistance. Bioresour Technol. 2017;244(Pt 1):969–974.
  • Wang X, Wang G, Yu X, et al. Pretreatment of corn stover by solid acid for D-lactic acid fermentation. Bioresour Technol. 2017;239:490–495.
  • Agarwal UP, Ralph SA, Baez C, et al. Effect of sample moisture content on XRD-estimated cellulose crystallinity index and crystallite size. Cellulose. 2017;24(5):1971–1984.
  • Li F, Xie RR, Liang N, et al. Biodegradation of lignin via Pseudocitrobacter anthropi MP-4 isolated from the gut of wood-feeding termite Microtermes pakistanicus (Isoptera: Termitidae). BioRes. 2019;14(1):1992–2012.
  • Asgher M, Ahmad Z, Iqbal HMN. Alkali and enzymatic delignification of sugarcane bagasse to expose cellulose polymers for saccharification and bio-ethanol production. Ind Crops Prod. 2013;44:488–495.
  • Ding DY, Zhou X, Ji Z, et al. How does plant cell wall nanoscale architecture correlate with enzymatic digestibility? Science. 2016;338:415–431.
  • Mohanram S, Rajan K, Carrier DJ, et al. Insights into biological delignification of rice straw by Trametes hirsuta and Myrothecium roridum and comparison of saccharification yields with dilute acid pretreatment. Biomass Bioenergy. 2015;76:54–60.
  • Manavalan T, Manavalan A, Heese K. Characterization of lignocellulolytic enzymes from white-rot fungi. Curr Microbiol. 2015;70(4):485–498.
  • Mei JF, Shen XB, Gang LP, et al. A novel lignin degradation bacteria-Bacillus amyloliquefaciens SL-7 used to degrade straw lignin efficiently. Bioresour Technol. 2020;310:123445.
  • Zhu L, O’Dwyer JP, Chang VS, et al. Structural features affecting biomass enzymatic digestibility. Bioresour Technol. 2008;99(9):3817–3828.
  • Yu J, Zhang JB, He J, et al. Combinations of mild physical or chemical pretreatment with biological pretreatment for enzymatic hydrolysis of rice hull. Bioresour Technol. 2009;100(2):903–908.
  • Wang W, Yuan TQ, Wang K, et al. Combination of biological pretreatment with liquid hot water pretreatment to enhance enzymatic hydrolysis of Populus tomentosa. Bioresour Technol. 2012;107:282–286.
  • Yu HB, Guo GN, Zhang XY, et al. The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresour Technol. 2009;100(21):5170–5175.
  • Kumar G, Bakonyi P, Periyasamy S, et al. Lignocellulose biohydrogen: practical challenges and recent progress. Renew Sust Energ Rev. 2015;44:728–737.
  • Kumar S, Sharma HK, Sarkar BC. Effect of substrate and fermentation conditions on pectinase and cellulase production by Aspergillus niger NCIM 548 in submerged (SmF) and solid-state fermentation (SSF). Food Sci Biotechnol. 2011;20(5):1289–1298.
  • Niglio S, Procentese A, Russo ME, et al. Combined pretreatments of coffee silver skin to enhance fermentable sugar yield. Biomass Conv Bioref. 2020;10(4):1237–1249.
  • Zhao C, Shao QJ, Ma ZQ, et al. Physical and chemical characterizations of corn stalk resulting from hydrogen peroxide presoaking prior to ammonia fiber expansion pretreatment. Ind Crops Prod. 2016;83:86–93.
  • Huang CX, He J, Wang Y, et al. Associating cooking additives with sodium hydroxide to pretreat bamboo residues for improving the enzymatic saccharification and monosaccharides production. Bioresour Technol. 2015;193:142–149.
  • Zhao C, Zou ZS, Li JS, et al. Efficient bioethanol production from sodium hydroxide pretreated corn stover and rice straw in the context of on-site cellulase production. Renew Energy. 2018;118:14–24.
  • Li WZ, Liu QY, Ma QZ, et al. A two-stage pretreatment process using dilute hydrochloric acid followed by fenton oxidation to improve sugar recovery from corn stover. Bioresour Technol. 2016;219:753–756.
  • Li K, Wan JM, Wang X, et al. Comparison of dilute acid and alkali pretreatments in production of fermentable sugars from bamboo: effect of tween 80. Ind Crops Prod. 2016;83:414–422.
  • Donohoe BS, Vinzant TB, Elander RT, et al. Surface and ultrastructural characterization of raw and pretreated switchgrass. Bioresour Technol. 2011;102(24):11097–11104.
  • Goncalves FA, Ruiz HA, Nogueira CD, et al. Comparison of delignified coconuts waste and cactus for fuel-ethanol production by the simultaneous and semi-simultaneous saccharification and fermentation strategies. Fuel. 2014;131:66–76.
  • Karimi K, Taherzadeh MJ. A critical review of analytical methods in pretreatment of lignocelluloses: composition, imaging, and crystallinity. Bioresour Technol. 2016;200:1008–1018.
  • Mou HY, Li B, Fardim P. Pretreatment of corn stover with the modified hydrotropic method to enhance enzymatic hydrolysis. Energy Fuels. 2014;28(7):4288–4293.
  • Van Dyk JS, Pletschke BI. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes-factors affecting enzymes, conversion and synergy. Biotechnol Adv. 2012;30(6):1458–1480.
  • Nam S, French AD, Condon BD, et al. Segal crystallinity index revisited by the simulation of X-ray diffraction patterns of cotton cellulose I beta and cellulose II. Carbohydr Polym. 2016;135:1–9.
  • Sun QN, Khunsupat R, Akato K, et al. A study of poplar organosolv lignin after melt rheology treatment as carbon fiber precursors. Green Chem. 2016;18:5051–5024.
  • Heinigen AV, Tunc MS, Gao Y, et al. Relationship between alkaline pulp yield and the mass fraction and degree of polymerization of cellulose in pulp. J Pulp Paper Sci. 2004;30(8):211–217.
  • Lu A, Liu YT, Zhang LN, et al. Investigation on metastable solution of cellulose dissolved in NaOH/urea aqueous system at low temperature. J Phys Chem B. 2011;115(44):12801–12808.