2,830
Views
4
CrossRef citations to date
0
Altmetric
Energy Materials

Effective silicon production from SiCl4 source using hydrogen radicals generated and transported at atmospheric pressure

, , &
Pages 482-491 | Received 07 May 2020, Accepted 26 Jun 2020, Published online: 27 Jul 2020

References

  • Lynch D, Ben W, Ji X, et al. Review of developments in production of silicon for photovoltaic, supplemental proceedings of TMS 2011 140th annual meeting and exhibition. Materials processing and energy materials, The Minerals Metals & Materials Society (TMS). New Jersey (USA): John Wiley & Sons Inc.; 2011. p. 685–692.
  • Schweickert H, Reuschel K, Gutsche H. Production of high-purity semiconductor materials for electrical purposes. United States Patent, US3,011,877. 1961 Dec.5
  • Gutsche H. Method for producing highest-purity silicon for electric semiconductor devices. United State. Patent, US3,042,494. 1962 July 3
  • Hou Y, Xie G, Tao D, et al. Thermodynamic study on SiCl4 hydrogenation system in siemens process. J Chem Eng Jpn. 2011;44:214.
  • Sumiya M, Akizuki T, Itaka K, et al. Effect of hydrogen radical on decomposition of chlorosilane source gases. J Phys Conf Ser. 2013;441(12003):1–6.
  • Dahmani F, Okamoto Y, Tsutsumi D, et al. Density evaluation of remotely-supplied hydrogen radicals produced via tungsten filament method for SiCl4 reduction. Jpn J Appl Phys. 2018;57(51301):1–4. .
  • Umemoto H, Ohara K, Morita D, et al. Direct detection of H atoms in the catalytic chemical vapor deposition of the SiH4/H2 system. J Appl Phys. 2002;91:1650–1656.
  • Feenstra K, Schropp R, van der Weg W. Deposition of amorphous silicon films by hot-wire chemical vapor deposition. J Appl Phys. 1999;85:6843–6852.
  • Otsuka T, Ihara M, Komiyama H. Hydrogen dissociation on hot tantalum and tungsten filaments under diamond deposition conditions. J Appl Phys. 1995;77:893–898.
  • Schwarz S, Rosiwal S, Frank M, et al. Dependence of the growth rate, quality, and morphology of diamond coatings on the pressure during the CVD-process in an industrial hot-filament plant. Diamond Rel Mater. 2002;11:589–595.
  • Umemoto H, Setoguchi S, Uemura H, et al. Coating techniques of metal chambers for remote catalytic chemical vapor deposition applications. J Vac Sci Technol A. 2008;26:309–311.
  • Redman A, Chung C, Ashfold M. H atom production in a hot filament chemical vapour deposition reactor. Diam Relat Mater. 1999;8:1383–1387.
  • Comerford D, D’Haenens-Johansson U, Smith J, et al. Filament seasoning and its effect on the chemistry prevailing in hot filament activated gas mixtures used in diamond chemical vapour deposition. Thin Solid Films. 2008;516:521–525.
  • Profijt H, Potts S, van de Sanden M, et al. Plasma-assisted atomic layer deposition: basics, opportunities, and challenges. J Vac Sci Technol A. 2011;29(50801):1–26.
  • Tamura K, Ohba H, Shibata T. Temperature distributions of a conductively heated filament. JAERI-Tech. 1999 Jul;99(50):1–8. Japanese.
  • Desal P, Chu K, James H, et al. Electrical resistivity of selected elements. J Phys Chem Ref Data. 1984;13:1069–1096.
  • Miura H, Kuroki Y, Yasui K, et al. Evaluation of hydrogen atom density generated on a tungsten mesh surface. Thin Solid Films. 2008;516:503–505.
  • Morimoto T, Umemoto H, Yoneyama K, et al. Quantification of gas-phase H-atom number density by tungsten phosphate glass. Jpn J Appl Phys. 2005;44:732–735.
  • Umemoto H, Matsumura H. Future prospect of remote Cat-CVD on the basis of the production, transportation and detection of H atoms. Thin Solid Films. 2008;516:500–502.
  • Meier U, Kohse-Hoinghaus K, Schafer L, et al. Two-photon excited LIF determination of H-atom concentrations near a heated filament in a low pressure H2 environment. Appl Opt. 1990;29:4993–4999.
  • Umemoto H. Production and detection of H atoms and vibrationally excited H2 molecules in CVD processes. Chem Vap Deposition. 2010;16:275–290. .
  • Theuerer H. Epitaxial silicon films by the hydrogen reduction of SiCl4. J Electrochem Soc. 1961;108:649–653.
  • Shabir Q, Pokale A, Loni A, et al. Medically biodegradable hydrogenated amorphous silicon microspheres. Silicon. 2011;3:173–176.