1,490
Views
2
CrossRef citations to date
0
Altmetric
Plant-Microorganism Interactions

The roots of olive cultivars differing in tolerance to Verticillium dahliae show quantitative differences in phenolic and triterpenic profiles

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Article: 2206840 | Received 15 Mar 2023, Accepted 20 Apr 2023, Published online: 02 May 2023

References

  • Al-Warhi T, Elmaidomy AH, Maher SA, Abu-Baih DH, Selim S, Albqmi M, et al. 2022. The wound-healing potential of Olea europaea L. cv. Arbequina leaves extract: an integrated in vitro, in silico, and in vivo investigation. Metabolites. 12:791. doi:10.3390/metabo12090791.
  • Ayele AG, Wheeler TA, Dever JK. 2020. Impacts of Verticillium wilt on photosynthesis rate, lint production, and fiber quality of greenhouse-grown cotton (Gossypium hirsutum). Plants. 9:857. doi:10.3390/plants9070857.
  • Báidez AG, Gómez P, Del Río JA, Ortuño A. 2006. Antifungal capacity of major phenolic compounds of Olea europaea L. against Phytophthora megasperma Drechsler and Cylindrocarpon destructans (Zinssm.) Scholten. Physiol Mol Plant Pathol. 69:224–229. doi:10.1016/j.pmpp.2007.05.001.
  • Báidez AG, Gómez P, Del Río JA, Ortuño A. 2007. Dysfunctionality of the xylem in Olea europaea L. plants associated with the infection process by Verticillium dahliae Kleb. role of phenolic compounds in plant defense mechanism. J Agric Food Chem. 55:3373–3377. doi:10.1021/jf063166d.
  • Boskou D. 2006. Chemistry and technology. In: Dimitrios Boskou editor. Olive oil. 2nd ed. New York: AOCS Publishing; p. 288. doi:10.4324/9781003040217.
  • Bubici G, Cirulli M. 2012. Control of Verticillium wilt of olive by resistant rootstocks. Plant Soil. 352:363–376. doi:10.1007/s11104-011-1002-9.
  • Cádiz-Gurrea MdlL, Pinto D, Delerue-Matos C, Rodrigues F. 2021. Olive fruit and leaf wastes as bioactive ingredients for cosmetics: a preliminary study. Antioxidants. 10:1–18. doi:10.3390/antiox10020245.
  • Cardoni M, Gómez-Lama Cabanás C, Valverde-Corredor A, Villar R, Mercado-Blanco J. 2022a. Unveiling differences in root defense mechanisms between tolerant and susceptible olive cultivars to Verticillium dahliae. Front Plant Sci. 13:1–19. doi:10.3389/fpls.2022.863055.
  • Cardoni M, Mercado-Blanco J, Villar R. 2021. Functional traits of olive varieties and their relationship with the tolerance level towards Verticillium wilt. Plants. 10: 1079. doi:10.3390/plants10061079.
  • Cardoni M, Quero JL, Villar R, Mercado-Blanco J. 2022b. Physiological and structural responses of olive leaves related totolerance/susceptibility to Verticillium dahliae. Plants. 11:2302. doi:10.3390/plants11172302.
  • Cayuela JA, Rada M, Rios JJ, Albi T, Guinda A. 2006. Changes in phenolic composition induced by Pseudomonas savastanoi pv. savastanoi infection in olive tree: presence of large amounts of verbascoside in nodules of tuberculosis disease. J Agric Food Chem. 54:5363–5368. doi:10.1021/jf060807w.
  • Chung PY, Navaratnam P, Chung LY. 2011. Synergistic antimicrobial activity between pentacyclic triterpenoids and antibiotics against Staphylococcus aureus strains. Ann Clin Microbiol Antimicrob. 10:1–6. doi:10.1186/1476-0711-10-25.
  • Del Río JA, Báidez AG, Botía JM, Ortuño A. 2003. Enhancement of phenolic compounds in olive plants (Olea europaea L.) and their influence on resistance against Phytophthora sp. Food Chem. 83:75–78. doi:10.1016/S0308-8146(03)00051-7.
  • De Mendiburu F, Simon R. 2015. Agricolae – Ten years of an open source statistical tool for experiments in breeding, agriculture and biology. PeerJ Pre Prints. 3:0–17. doi:10.7287/peerj.preprints.1404.
  • Deng J, Wang H, Mu X, He X, Zhao F, Meng Q. 2021. Advances in research on the preparation and biological activity of maslinic acid, in Mini reviews in medicinal chemistry. Sharjah, UAE: Bentham Science Publishers, 79–89.
  • Dzubak P, Hajduch M, Vydra D, Hustova A, Kvasnica M, Biedermann D, et al. 2006. Pharmacological activities of natural triterpenoids and their therapeutic implications. Nat Prod Rep. 23:394–411. doi:10.1039/b515312n.
  • Ferreira RB, Monteiro S, Freitas R, Santos CN, Chen Z, Batista LM, et al. 2007. The role of plant defence proteins in fungal pathogenesis. Mol Plant Pathol. 8:677–700. doi:10.1111/j.1364-3703.2007.00419.x.
  • García-Ruiz GM, Trapero C, Del Río C, López-Escudero FJ. 2014. Evaluation of resistance of Spanish olive cultivars to Verticillium dahliae in inoculations conducted in greenhouse. Phytoparasitica. 42:205–212. doi:10.1007/s12600-013-0353-6.
  • Gharbi Y, Barkallah M, Bouazizi E, Gdoura R, Triki MA. 2017. Differential biochemical and physiological responses of two olive cultivars differing by their susceptibility to the hemibiotrophic pathogen Verticillium dahliae. Physiol Mol Plant Pathol. 97:30–39. doi:10.1016/j.pmpp.2016.12.001.
  • Gómez-Lama Cabanás C, Schilirò E, Valverde-Corredor A, Mercado-Blanco J. 2015. Systemic responses in a tolerant olive (Olea europaea L.) cultivar upon root colonization by the vascular pathogen Verticillium dahliae. Front Microbiol. 6:1–13. doi:10.3389/fmicb.2015.00928.
  • Guinda Á, Rada M, Delgado T, Gutiérrez-Adánez P, Castellano JM. 2010. Pentacyclic triterpenoids from olive fruit and leaf. J Agric Food Chem. 58:9685–9691. doi:10.1021/jf102039t.
  • Jäger S, Trojan H, Kopp T, Laszczyk MN, Scheffler A. 2009. Pentacyclic triterpene distribution in various plants, rich sources for a new group of multi-potent plant extracts. Molecules. 14:2016–2031. doi:10.3390/molecules14062016.
  • Jamkhande PG, Pathan SK, Wadher SJ. 2016. In silico PASS analysis and determination of antimycobacterial, antifungal, and antioxidant efficacies of maslinic acid in an extract rich in pentacyclic triterpenoids. Int J Mycobacteriology. 5:417–425. doi:10.1016/j.ijmyco.2016.06.020.
  • Johnson G, Schaal LA. 1952. Relation of chlorogenic acid to scab resistance in potatoes. Science. 80(115):627–629. doi:10.1126/science.115.2997.627.
  • Juven B, Henis Y. 1970. Studies on the antimicrobial activity of ovotransferrin. J. Appl Bacteriol. 33:721–732.
  • Kanakis P, Termentzi A, Michel T, Gikas E, Halabalaki M, Skaltsounis AL. 2013. From olive drupes to olive oil. An HPLC-orbitrap-based qualitative and quantitative exploration of olive key metabolites. Planta Med. 79:1576–1587. doi:10.1055/s-0033-1350823.
  • Karygianni L, Cecere M, Argyropoulou A, Hellwig E, Skaltsounis AL, Wittmer A, et al. 2019. Compounds from Olea europaea and Pistacia lentiscus inhibit oral microbial growth. BMC Complement Altern Med. 19:1–10. doi:10.1186/s12906-019-2461-4.
  • Kassambara A. 2016. Practical guide to principal component methods in R: PCA, M (CA), FAMD, MFA, HCPC, factoextra. Vol. 2. Sthda.
  • Kolde R. 2018. Package pheatmap. R package 1.10.
  • Kunej U, Mikulič-Petkovšek M, Radišek S, Štajner N. 2020. Changes in the phenolic compounds of hop (Humulus lupulus l.) induced by infection with Verticillium nonalfalfae, the causal agent of hop Verticillium wilt. Plants. 9:841. doi:10.3390/plants9070841.
  • Kutchan T. 2001. Ecological arsenal and developmental dispatcher. The Paradigm of Secondary Metabolism. Plant Physiol. 125:58–60. doi:10.1104/pp.125.1.58
  • Lattanzio V, Cardinali A. 2006. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res. 661:23–67.
  • Leyva-Pérez MdlO, Jiménez-Ruiz J, Gómez-Lama Cabanás C, Valverde-Corredor A, Barroso JB, Luque F, et al. 2018. Tolerance of olive (Olea europaea) cv Frantoio to Verticillium dahliae relies on both basal and pathogen-induced differential transcriptomic responses. New Phytol. 217:671–686. doi:10.1111/nph.14833
  • Li Y, Wang J, Li L, Song W, Li M, Hua X, et al. 2022. Natural products of pentacyclic triterpenoids: from discovery to heterologous biosynthesis. Nat Prod Rep. doi:10.1039/d2np00063f.
  • Link K, Walker JC. 1933. The isolation of catechol from pigmented onion scales and its significance in relation to disease resistance in Onions. J Biol Chem. 100:2.
  • Lins FSV, de Souza TA, Opretzka LCF, e Silva JPR, Pereira LCO, Abreu LS, et al. 2022. New pregnane glycosides from Mandevilla dardanoi and their anti-inflammatory activity. Molecules. 27:1–16. doi:10.3390/molecules27185992.
  • Liu S, Liu H, Zhang L, Ma C, Abd El-Aty AM. 2022. Edible pentacyclic triterpenes: a review of their sources, bioactivities, bioavailability, self-assembly behavior, and emerging applications as functional delivery vehicles. Crit Rev Food Sci Nutr. 1–17. doi:10.1080/10408398.2022.2153238.
  • López-Escudero FJ, Del Río C, Caballero JM, Blanco-López MA. 2004. Evaluation of olive cultivars for resistance to Verticillium dahliae. Eur J Plant Pathol. 110:79–85. doi:10.1023/B:EJPP.0000010150.08098.2d.
  • López-Escudero FJ, Mercado-Blanco J. 2011. Verticillium wilt of olive: a case study to implement an integrated strategy to control a soil-borne pathogen. Plant Soil. 344:1–50. doi:10.1007/s11104-010-0629-2.
  • Markakis EA, Tjamos SE, Antoniou PP, Roussos PA, Paplomatas EJ, Tjamos EC. 2010. Phenolic responses of resistant and susceptible olive cultivars induced by defoliating and non-defoliating Verticillium dahliae pathotypes. Plant Dis. 94:1156–1162. doi:10.1094/PDIS-94-9-1156.
  • Marsilio V, Lanza B. 1998. Characterisation of an oleuropein degrading strain of Lactobacillus plantarum. Combined effects of compounds present in olive fermenting brines (phenols, glucose and NaCl) on bacterial activity. J Sci Food Agric. 76:520–524. doi:10.1002/(SICI)1097-0010(199804)76:4 <; 520::AID-JSFA982 > 3.0.CO;2-I.
  • Mechri B, Tekaya M, Attia F, Hammami M, Chehab H. 2020. Drought stress improved the capacity of Rhizophagus irregularis for inducing the accumulation of oleuropein and mannitol in olive (Olea europaea) roots. Plant Physiol Biochem. 156:178–191. doi:10.1016/j.plaphy.2020.09.011.
  • Mechri B, Tekaya M, Hammami M, Chehab H. 2019. Root verbascoside and oleuropein are potential indicators of drought resistance in olive trees (Olea europaea L.). Plant Physiol Biochem. 141:407–414. doi:10.1016/j.plaphy.2019.06.024.
  • Michel T, Khlif I, Kanakis P, Termentzi A, Allouche N, Halabalaki M, et al. 2015. UHPLC-DAD-FLD and UHPLC-HRMS/MS based metabolic profiling and characterization of different Olea europaea organs of Koroneiki and Chetoui varieties. Phytochem Lett. 11:424–439. doi:10.1016/j.phytol.2014.12.020.
  • Montes-Osuna N, Mercado-Blanco J. 2020. Verticillium wilt of olive and its control: what did we learn during the last decade? Plants. 9:735. doi:10.3390/plants9060735.
  • Olmo-García L, Bajoub A, Fernández-Gutiérrez A, Carrasco-Pancorbo A. 2016. Evaluating the potential of LC coupled to three alternative detection systems (ESI-IT, APCI-TOF and DAD) for the targeted determination of triterpenic acids and dialcohols in olive tissues. Talanta. 150:355–366. doi:10.1016/j.talanta.2015.12.042.
  • Olmo-García L, Carrasco-Pancorbo A. 2021. Chromatography-MS based metabolomics applied to the study of virgin olive oil bioactive compounds: characterization studies, agro-technological investigations and assessment of healthy properties. TrAC - Trends Anal Chem. 135:116153. doi:10.1016/j.trac.2020.116153.
  • Olmo-García L, Kessler N, Neuweger H, Wendt K, Olmo-Peinado JM, Fernández-Gutiérrez A, et al. 2018. Unravelling the distribution of secondary metabolites in Olea europaea L.: exhaustive characterization of eight olive-tree derived matrices by complementary platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules. 23:1–16. doi:10.3390/molecules23102419.
  • Ortega-García F, Peragón J. 2009. The response of phenylalanine ammonia-lyase, polyphenol oxidase and phenols to cold stress in the olive tree (Olea europaea L. cv. Picual). J Sci Food Agric. 89:1565–1573. doi:10.1002/jsfa.3625.
  • Ortega-García F, Peragón J. 2010. HPLC analysis of oleuropein, hydroxytyrosol, and tyrosol in stems and roots of Olea europaea L. cv. picual during ripening. J Sci Food Agric. 90:2295–2300. doi:10.1002/jsfa.4085.
  • Petridis A, Therios I, Samouris G, Tananaki C. 2012. Salinity-induced changes in phenolic compounds in leaves and roots of four olive cultivars (Olea europaea L.) and their relationship to antioxidant activity. Environ Exp Bot. 79:37–43. doi:10.1016/j.envexpbot.2012.01.007.
  • Pichersky E, Gang DR. 2000. Genetics and biochemistry of secondary metabolites in plants: An evolutionary perspective. Trends Plant Sci. 5:439–445. doi:10.1016/S1360-1385(00)01741-6.
  • Ruiz-Barba JL, Garrido-Fernández A, Jiménez-Díaz R. 1991. Bactericidal action of oleuropein extracted from green olives against Lactobacillus plantarum. Lett Appl Microbiol. 12:65–68. doi:10.1111/j.1472-765X.1991.tb00505.x.
  • Ryan D, Robards K. 1998. Phenolic compounds in olives. Analyst. 123:31–44. doi:10.1039/a708920a.
  • Sabella E, Luvisi A, Aprile A, Negro C, Vergine M, Nicolì F, et al. 2018. Xylella fastidiosa induces differential expression of lignification related-genes and lignin accumulation in tolerant olive trees cv. Leccino. J Plant Physiol. 220:60–68. doi:10.1016/j.jplph.2017.10.007.
  • Seepe HA, Ramakadi TG, Lebepe CM, Amoo SO, Nxumalo W. 2021. Antifungal activity of isolated compound from the leaves of Combretum erythrophyllum (Burch.) Sond. and Withania somnifera (L.) Dunal against Fusarium pathogens. Molecules. 26:4732.
  • Serrano A, Rodríguez-Jurado D, López-Escudero FJ, Román B, Belaj A, De la Rosa R, Luque F, Ramírez-Tejero JA, León L. 2020. Verticillium wilt response of an olive core collection. Poster session presented at: The 7th international horticulture research conference; July 1–30; Northwest A&F University; China.
  • Serrano A, Rodríguez-Jurado D, Ramírez-Tejero JA, Luque F, López-Escudero FJ, Belaj A, Román B, León L. 2023. Response to Verticillium dahliae infection in a genetically diverse set of olive cultivars. Sci Hortic. 316:112008. doi:10.1016/j.scienta.2023.112008
  • Serrano-García I, Olmo-García L, Polo-Megías D, Serrano A, León L, de la Rosa R, et al. 2022. Fruit phenolic and triterpenic composition of progenies of Olea europaea subsp. cuspidata, an interesting phytochemical source to be included in olive breeding programs. Plants. 11:1791. doi:10.3390/plants11141791.
  • Skodra C, Michailidis M, Dasenaki M, Ganopoulos I, Thomaidis NS, Tanou G, et al. 2021. Unraveling salt-responsive tissue-specific metabolic pathways in olive tree. Physiol Plant. 173:1643–1656.
  • Sumner LW, Amberg A, Barrett D, Beale MH, Beger R, Daykin CA, et al. 2007. Proposed minimum reporting standards for chemical analysis: chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics. 3:211–221. doi:10.1007/s11306-007-0082-2.
  • Tassou CC, Nychas GJE. 1994. Inhibition of Staphylococcus aureus by olive phenolics in broth and in a model food system. J Food Prot. 57:120–124. doi:10.4315/0362-028x-57.2.120.
  • Termentzi A, Halabalaki M, Skaltsounis AL. 2015. From drupes to olive oil: an exploration of olive key metabolites. In: Olive and olive oil bioactive constituents. AOCS Press; p. 147–177. doi:10.1016/B978-1-63067-041-2.50012-4.
  • Thatcher LF, Anderson JP, Singh KB. 2005. Plant defence responses: what have we learnt from Arabidopsis? Funct Plant Biol. 32:1–19. doi:10.1071/FP04135.
  • Torres-Vega J, Gómez-Alonso S, Pérez-Navarro J, Alarcón-Enos J, Pastene-Navarrete E. 2021. Polyphenolic compounds extracted and purified from Buddleja globosa hope (Buddlejaceae) leaves using natural deep eutectic solvents and centrifugal partition chromatography. Molecules. 26:2192. doi:10.3390/molecules26082192.
  • Trapero C, Alcántara E, Jiménez J, Amaro-Ventura MC, Romero J, Koopmann B, et al. 2018. Starch hydrolysis and vessel occlusion related to wilt symptoms in olive stems of susceptible cultivars infected by Verticillium dahliae. Front Plant Sci. 9:1–8. doi:10.3389/fpls.2018.00072.
  • Trapero C, Rallo L, López-Escudero FJ, Barranco D, Díez CM. 2015. Variability and selection of Verticillium wilt resistant genotypes in cultivated olive and in the Olea genus. Plant Pathol. 64:890–900. doi:10.1111/ppa.12330.
  • Trapero C, Serrano N, Arquero O, Del Río C, Trapero A, López-Escudero FJ. 2012. Field resistance to Verticillium wilt in selected olive cultivars grown in two naturally infested soils. Plant Dis. 97:668–674. doi:10.1094/PDIS-07-12-0654-RE.
  • Tsror LL. 2011. Review: epidemiology and control of Verticillium wilt on olive. Isr J Plant Sci. 59:59–69. doi:10.1560/IJPS.59.1.59.
  • Uccella N. 2000. Olive biophenols: biomolecular characterization, distribution and phytoalexin histochemical localization in the drupes. Trends Food Sci Technol. 11:9–10. doi: 10.1016/S0924-2244(01)00029-2
  • Valverde P, Barranco D, López-Escudero FJ, Díez CM, Trapero C. 2023. Efficiency of breeding olives for resistance to Verticillium wilt. Front Plant Sci. 14:566.
  • Valverde P, Trapero C, Arquero O, Serrano N, Barranco D, Muñoz Díez C, et al. 2021. Highly infested soils undermine the use of resistant olive rootstocks as a control method of Verticillium wilt. Plant Pathol. 70:144–153. doi:10.1111/ppa.13264.
  • Wen JH, Zhao HF, Hong JH, He Y, Guang ZZ, Chang JJ, et al. 2011. Benzoic acid allopyranosides and lignan glycosides from the twigs of Keteleeria evelyniana. Zeitschrift fur Naturforsch. Sect B J Chem Sci. 66:733–739. doi:10.1515/znb-2011-0715.
  • Zarco-Tejada PJ, Poblete T, Camino C, González-Dugo V, Calderón R, Hornero A, et al. 2021. Divergent abiotic spectral pathways unravel pathogen stress signals across species. Nat Commun. 12:1–11. doi:10.1038/s41467-021-26335-3.