1,247
Views
2
CrossRef citations to date
0
Altmetric
Plant-Environment Interactions (open environment)

The seaweed Ascophyllum nodosum-based biostimulant enhances salt stress tolerance in rice (Oryza sativa L.) by remodeling physiological, biochemical, and metabolic responses

, , , , , & show all
Article: 2266514 | Received 30 Apr 2023, Accepted 29 Sep 2023, Published online: 05 Oct 2023

References

  • Akhter MS, Noreen S, Mahmood S, Athar HU, Ashraf M, Alsahli AA, Ahmad P. 2021. Influence of salinity stress on PSII in barley (Hordeum vulgare L.) genotypes, probed by chlorophyll-a fluorescence. Journal of King Saud University - Science. 33:101239. doi:10.1016/j.jksus.2020.101239.
  • Akter M, Oue H. 2018. Effect of saline irrigation on accumulation of Na+, K+, Ca2+, and Mg2+ ions in rice plants. Agriculture. 8(10):164. doi:10.3390/agriculture8100164.
  • Ali O, Ramsubhag A, Farrell AD, Jayaraman J. 2022. Foliar application of seaweed extracts influences the phytomicrobiome dynamics in tomato and sweet pepper plants. J Appl Phycol. 34:3219–3235. doi:10.1007/s10811-022-02823-x.
  • Arnon DI. 1949. A copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta Vulgaris. Plant Physiol. 24:1–15. doi:10.1104/pp.24.1.1.
  • Asadi M, Rasouli F, Amini T, Hassanpouraghdam MB, Souri S, Skrovankova S, Mlcek J, Ercisli S. 2022. Improvement of photosynthetic pigment characteristics, mineral content, and antioxidant activity of lettuce (Lactuca sativa L.) by arbuscular mycorrhizal fungus and seaweed extract foliar application. Agronomy. 12(8):1943. doi:10.3390/agronomy12081943.
  • Assaha DVM, Ueda A, Saneoka H, Al-Yahyai R, Yaish MW. 2017. The role of Na+ and K+ transporters in salt stress adaptation in glycophytes. Front Physiol. 8:509. doi:10.3389/fphys.2017.00509.
  • Baltazar M, Correia S, Guinan KJ, Sujeeth N, Bragança R, Gonçalves B. 2021. Recent advances in the molecular effects of biostimulants in plants: an overview. Biomolecules. 11:1096–1027. doi:10.3390/biom11081096.
  • Bandehagh A, Taylor NL. 2020. Can alternative metabolic pathways and shunts overcome salinity induced inhibition of central carbon metabolism in crops? Front Plant Sci. 11:1072. doi:10.3389/fpls.2020.01072.
  • Basu S, Kumar A, Benazir I, Kumar G. 2021. Reassessing the role of ion homeostasis for improving salinity tolerance in crop plants. Physiol Plant. 171:502–519. doi:10.1111/ppl.13112.
  • Battacharyya D, Babgohari MZ, Rathor P, Prithiviraj B. 2015. Seaweed extracts as biostimulants in horticulture. Sci Hortic. 196:39–48. doi:10.1016/j.scienta.2015.09.012.
  • Bazrafshan AH, Ehsanzadeh PJP. 2014. Growth, photosynthesis and ion balance of sesame (Sesamum indicum L.) genotypes in response to NaCl concentration in hydroponic solutions. Photosynthetica. 52:134–147. doi:10.1007/s11099-014-0015-z.
  • Bonomelli C, Celis V, Lombardi G, Mártiz J. 2018. Salt stress effects on avocado (Persea americana Mill.) plants with and without seaweed extract (Ascophyllum nodosum) application. Agronomy. 8:64. doi:10.3390/agronomy8050064.
  • Carmody N, Goñi O, Łangowski Ł, O’Connell S. 2020. Ascophyllum nodosum extract biostimulant processing and its impact on enhancing heat stress tolerance during tomato fruit set. Front Plant Sci. 11:807. doi:10.3389/fpls.2020.00807.
  • Chandrasekaran M, Chanratana M, Kim K, Seshadri S, Sa T. 2019. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress–a meta-analysis. Front Plant Sci. 10:457. doi:10.3389/fpls.2019.00457.
  • Chaves MM, Flexas J, Pinheiro C. 2009. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 103(4):551–560. doi:10.1093/aob/mcn125.
  • Che Y, Yao T, Wang H, Wang Z, Zhang H, Sun G, Zhang H. 2022. Potassium ion regulates hormone, Ca2+ and H2O2 signal transduction and antioxidant activities to improve salt stress resistance in tobacco. Plant Physiol Biochem. 186:40–51. doi:10.1016/j.plaphy.2022.06.027.
  • Chele KH, Tinte MM, Piater LA, Dubery IA, Tugizimana F. 2021. Soil salinity, a serious environmental issue and plant responses: a metabolomics perspective. Metabolites. 11:724. doi:10.3390/metabo11110724.
  • Chouliaras V, Tasioula M, Chatzissavvidis C, Therios I, Tsabolatidou E. 2009. The effects of a seaweed extract in addition to nitrogen and boron fertilization on productivity, fruit maturation, leaf nutritional status and oil quality of the olive (Olea europaeaL.) cultivar Koroneiki. J Sci Food Agric. 89:984–988. doi:10.1002/jsfa.3543.
  • Chrysargyris A, Xylia P, Anastasiou M, Pantelides I, Tzortzakis N. 2018. Effects of Ascophyllum nodosum seaweed extracts on lettuce growth, physiology and fresh-cut salad storage under potassium deficiency. J Sci Food Agric. 98:5861–5872. doi:10.1002/jsfa.9139.
  • Cocozza C, Pulvento C, Lavini A, Riccardi M, d’Andria R, Tognetti R. 2013. Effects of increasing salinity stress and decreasing water availability on ecophysiological traits of quinoa (Chenopodium quinoaWilld.) grown in a mediterranean-type agroecosystem. J Agron Crop Sci. 199:229–240. doi:10.1111/jac.12012.
  • D’Amato R, Del Buono D. 2021. Use of a biostimulant to mitigate salt stress in maize plants. Agronomy. 11:1755. doi:10.3390/agronomy11091755.
  • de Freitas PAF, de Carvalho HH, Costa JH, Miranda RS, Saraiva K, de Oliveira FDB, Coelho DG, Prisco JT, Gomes-Filho E. 2019. Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep. 38:403–416. doi:10.1007/s00299-019-02382-5.
  • Dell'Aversana E, Cirillo V, Van Oosten MJ, Di Stasio E, Saiano K, Woodrow P, Ciarmiello LF, Maggio A, Carillo P. 2021. Ascophyllum nodosum based extracts counteract salinity stress in tomato by remodeling leaf nitrogen metabolism. Plants. 10(6):1044. doi:10.3390/plants10061044.
  • Di Stasio E, Van Oosten MJ, Silletti S, Raimondi G, dell’Aversana E, Carillo P, Maggio A. 2018. Ascophyllum nodosum-based algal extracts act as enhancers of growth, fruit quality, and adaptation to stress in salinized tomato plants. J Appl Phycol. 30:2675–2686. doi:10.1007/s10811-018-1439-9.
  • Doderer A, Kokkelink I, van der Veen S, Valk BE, Schram AW, Douma AC. 1992. Purification and characterization of two lipoxygenase isoenzymes from germinating barley. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1120:97–104. doi:10.1016/0167-4838(92)90429-H.
  • Dong NQ, Lin HX. 2021. Contribution of phenylpropanoid metabolism to plant development and plant–environment interactions. J Integr Plant Biol. 63:180–209. doi:10.1111/jipb.13054.
  • Dumanović J, Nepovimova E, Natić M, Kuča K, Jaćević V. 2021. The significance of reactive oxygen species and antioxidant defense system in plants: a concise overview. Front Plant Sci. 11:552969. doi:10.3389/fpls.2020.552969.
  • Eckerstorfer MF, Engelhard M, Heissenberger A, Simon S, Teichmann H. 2019. Plants developed by New genetic modification techniques—comparison of existing regulatory frameworks in the EU and Non-EU countries. Front Bioeng Biotechnol. 7:26. doi:10.3389/fbioe.2019.00026.
  • Fan D, Mark Hodges D, Critchley AT, Prithiviraj B. 2013. A commercial extract of brown macroalga (Ascophyllum nodosum) affects yield and the nutritional quality of Spinach in vitro. Commun Soil Sci Plant Anal. 44(12):1873–1884. doi:10.1080/00103624.2013.790404.
  • Feng Y, Chen X, He Y, Kou X, Xue Z. 2019. Effects of exogenous trehalose on the metabolism of sugar and abscisic acid in tomato seedlings under salt stress. Transactions of Tianjin University. 25:451–471. doi:10.1007/s12209-019-00214-x.
  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3Plants. Plant Biology. 6(03):269–279. doi:10.1055/s-2004-820867.
  • Franzoni G, Cocetta G, Prinsi B, Ferrante A, Espen L. 2022. Biostimulants on crops: their impact under abiotic stress conditions. Horticulturae. 8(3):189. doi:10.3390/horticulturae8030189.
  • Fujita M, Hasanuzzaman M. 2022. Approaches to enhancing antioxidant defense in plants. Antioxidants. 11(5):925. doi:10.3390/antiox11050925.
  • Garrote-Moreno A, Sandoval-Gil JM, Ruiz JM, Marín-Guirao L, Bernardeau-Esteller J, Muñoz RG, Sánchez-Lizaso JL. 2015. Plant water relations and ion homoeostasis of Mediterranean seagrasses (Posidonia oceanica and Cymodocea nodosa) in response to hypersaline stress. Mar Biol. 162:55–68. doi:10.1007/s00227-014-2565-9.
  • Głosek-Sobieraj M, Cwalina-Ambroziak B, Wierzbowska J, Waśkiewicz A. 2019. The influence of biostimulants on the contentof P, K, Ca, Mg, and Na in the skin and fleshof potato tubers. Pol J Environ Stud. 28:1693–1700. doi:10.15244/pjoes/87060.
  • Goñi O, Fort A, Quille P, McKeown PC, Spillane C, O’Connell S. 2016. Comparative transcriptome analysis of two Ascophyllum nodosum extract biostimulants: same seaweed but different. J Agric Food Chem. 64:2980–2989. doi:10.1021/acs.jafc.6b00621.
  • Goñi O, Quille P, O'Connell S. 2018. Ascophyllum nodosum extract biostimulants and their role in enhancing tolerance to drought stress in tomato plants. Plant Physiol Biochem. 126:63–73. doi:10.1016/j.plaphy.2018.02.024.
  • Gunupuru LR, Patel JS, Sumarah MW, Renaud JB, Mantin EG, Prithiviraj B. 2019. A plant biostimulant made from the marine brown algae Ascophyllum nodosum and chitosan reduce Fusarium head blight and mycotoxin contamination in wheat. PLoS One. 14:e0220562. doi:10.1371/journal.pone.0220562.
  • Guo H, Huang Z, Li M, Hou Z. 2020. Growth, ionic homeostasis, and physiological responses of cotton under different salt and alkali stresses. Sci Rep. 10:21844. doi:10.1038/s41598-020-79045-z.
  • Hatfield JL, Dold C. 2019. Water-use efficiency: advances and challenges in a changing climate. Front Plant Sci. 10:103. doi:10.3389/fpls.2019.00103.
  • Hnilickova H, Kraus K, Vachova P, Hnilicka F. 2021. Salinity stress affects photosynthesis, malondialdehyde formation, and proline content in Portulaca oleracea L. Plants. 10:845. doi:10.3390/plants10050845.
  • Hoang TML, Tran TN, Nguyen TKT, Williams B, Wurm P, Bellairs S, et al. 2016. Improvement of salinity stress tolerance in rice: challenges and opportunities. Agronomy. 6:54.
  • Hossain MS, Li J, Sikdar A, Hasanuzzaman M, Uzizerimana F, Muhammad I, Yuan Y, Zhang C, Wang C, Feng B. 2020. Exogenous melatonin modulates the physiological and biochemical mechanisms of drought tolerance in tartary buckwheat (Fagopyrum tataricum (L.) Gaertn). Molecules. 25(12):2828. doi:10.3390/molecules25122828.
  • Igamberdiev AU, Eprintsev AT. 2016. Organic acids: the pools of fixed carbon involved in redox regulation and energy balance in higher plants. Front Plant Sci. 7:1042. doi:10.3389/fpls.2016.01042.
  • Isayenkov SV, Maathuis FJM. 2019. Plant salinity stress: many unanswered questions remain. Front Plant Sci. 10:80. doi:10.3389/fpls.2019.00080.
  • Jannin L, Arkoun M, Etienne P, Laîné P, Goux D, Garnica M, Fuentes M, Francisco SS, Baigorri R, Cruz F, et al. 2013. Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. seaweed extract: microarray analysis and physiological characterization of N, C, and S metabolisms. J Plant Growth Regul. 32:31–52. doi:10.1007/s00344-012-9273-9.
  • Jithesh MN, Shukla PS, Kant P, Joshi J, Critchley AT, Prithiviraj B. 2019. Physiological and transcriptomics analyses reveal that Ascophyllum nodosum extracts induce salinity tolerance in arabidopsis by regulating the expression of stress responsive genes. J Plant Growth Regul. 38:463–478. doi:10.1007/s00344-018-9861-4.
  • Jolinda M, Leitão ET, Gomes CD, Rodrigues MH, Valéria FDO, dos Santos GL, et al. 2018. The initial growth of passion fruit plant irrigated with saline water and the application of biostimulants. J Agric Sci. 10:357–363.
  • Kakar N, Jumaa SH, Redona ED, Warburton ML, Reddy KR. 2019. Evaluating rice for salinity using pot-culture provides a systematic tolerance assessment at the seedling stage. Rice. 12:57. doi:10.1186/s12284-019-0317-7.
  • Keunen E, Peshev D, Vangronsveld J, Van Den Ende W, Cuypers A. 2013. Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ. 36:1242–1255. doi:10.1111/pce.12061.
  • Khataar M, Mohammadi MH, Shabani F. 2018. Author correction: soil salinity and matric potential interaction on water use, water use efficiency and yield response factor of bean and wheat. Sci Rep. 8:13280. doi:10.1038/s41598-018-31452-z.
  • Kim BM, Lee HJ, Song YH, Kim HJ. 2021. Effect of salt stress on the growth, mineral contents, and metabolite profiles of spinach. J Sci Food Agric. 101:3787–3794. doi:10.1002/jsfa.11011.
  • Kumar M, Patel KM, Kumar N, Bajpai AB, Siddique KHM. 2021. Metabolomics and molecular approaches reveal drought stress tolerance in plants. Int J Mol Sci. 22:9108. doi:10.3390/ijms22179108.
  • Kumari S, Phogat D, Sehrawat KD, Choudhary R, Rajput VD, Ahlawat J, Karunakaran R, Minkina T, Sehrawat AR. 2021. The effect of Ascophyllum nodosum extract on the nutraceutical antioxidant potential of vigna radiata sprout under salt stress. Plants. 10(6):1216. doi:10.3390/plants10061216.
  • Lan T, Zheng Y, Su Z, Yu S, Song H, Zheng X, Lin G, Wu W. 2019. OsSPL10, a SBP-Box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativaL.). G3 Genes|Genomes|Genetics. 9:4107–4114. doi:10.1534/g3.119.400700.
  • Łangowski Ł, Goñi O, Ikuyinminu E, Feeney E, O’Connell S. 2022. Investigation of the direct effect of a precision Ascophyllum nodosum biostimulant on nitrogen use efficiency in wheat seedlings. Plant Physiol Biochem. 179:44–57. doi:10.1016/j.plaphy.2022.03.006.
  • Li Y, He N, Hou J, Xu L, Liu C, Zhang J, Wang Q, Zhang X, Wu X. 2018. Factors influencing leaf chlorophyll content in natural forests at the biome scale. Front Ecol Evol. 6:64. doi:10.3389/fevo.2018.00064.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 25:402–408. doi:10.1006/meth.2001.1262.
  • Ma D, Sun D, Wang C, Li Y, Guo T. 2014. Expression of flavonoid biosynthesis genes and accumulation of flavonoid in wheat leaves in response to drought stress. Plant Physiol Biochem. 80:60–66. doi:10.1016/j.plaphy.2014.03.024.
  • Mascellani A, Natali L, Cavallini A, Mascagni F, Caruso G, Gucci R, Havlik J, Bernardi R. 2021. Moderate salinity stress affects expression of main sugar metabolism and transport genes and soluble carbohydrate content in ripe fig fruits (Ficus carica L. cv. Dottato). Plants. 10:1861. doi:10.3390/plants10091861.
  • Mazhar S, Pellegrini E, Contin M, Bravo C, De Nobili M. 2022. Impacts of salinization caused by sea level rise on the biological processes of coastal soils - A review. Front Plant Sci. 10:909415.
  • Mohanavelu A, Naganna SR, Al-Ansari N. 2021. Irrigation induced salinity and sodicity hazards on soil and groundwater: an overview of its causes, impacts and mitigation strategies. Agriculture. 11:983. doi:10.3390/agriculture11100983.
  • Mousavi S, Regni L, Bocchini M, Mariotti R, Cultrera NGM, Mancuso S, Googlani J, Chakerolhosseini MR, Guerrero C, Albertini E, et al. 2019. Physiological, epigenetic and genetic regulation in some olive cultivars under salt stress. Sci Rep. 9:1093. doi:10.1038/s41598-018-37496-5.
  • Munns R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25(2):239–250. doi:10.1046/j.0016-8025.2001.00808.x.
  • Nair P, Kandasamy S, Zhang J, Ji X, Kirby C, Benkel B, Hodges MD, Critchley AT, Hiltz D, Prithiviraj B. 2012. Transcriptional and metabolomic analysis of Ascophyllum nodosum mediated freezing tolerance in Arabidopsis thaliana. BMC Genomics. 13:643. doi:10.1186/1471-2164-13-643.
  • Omidbakhshfard MA, Sujeeth N, Gupta S, Omranian N, Guinan KJ, Brotman Y, Nikoloski Z, Fernie AR, Mueller-Roeber B, Gechev TS. 2020. A biostimulant obtained from the seaweed Ascophyllum nodosum protects Arabidopsis thaliana from severe oxidative stress. Int J Mol Sci. 21(2):474. doi:10.3390/ijms21020474.
  • Plett DC, Ranathunge K, Melino VJ, Kuya N, Uga Y, Kronzucker HJ. 2020. The intersection of nitrogen nutrition and water use in plants: new paths toward improved crop productivity. J Exp Bot. 71:4452–4468. doi:10.1093/jxb/eraa049.
  • Ramírez-Olvera SM, Trejo-Téllez LI, Gómez-Merino FC, Ruíz-Posadas LM, Alcántar-González EG, Saucedo-Veloz C. 2021. Silicon stimulates plant growth and metabolism in rice plants under conventional and osmotic stress conditions. Plants. 10:777. doi:10.3390/plants10040777.
  • Ran X, Wang X, Gao X, Liang H, Liu B, Huang X. 2021. Effects of salt stress on the photosynthetic physiology and mineral ion absorption and distribution in white willow (Salix alba L.). PLoS One. 16(11):e0260086.
  • Rao KVM, Sresty TVS. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Sci. 157:113–128. doi:10.1016/S0168-9452(00)00273-9.
  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, et al. 2022. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol. 15:1–28. doi:10.1080/07388551.2022.2093695.
  • Rouphael Y, Colla G. 2020. Toward a sustainable agriculture through plant biostimulants: from experimental data to practical applications. Agronomy. 10:1461. doi:10.3390/agronomy10101461.
  • Sachdev S, Ansari SA, Ansari MI, Fujita M, Hasanuzzaman M. 2021. Abiotic stress and reactive oxygen species: generation, signaling, and defense mechanisms. Antioxidants. 10:277. doi:10.3390/antiox10020277.
  • Salvi L, Brunetti C, Cataldo E, Niccolai A, Centritto M, Ferrini F, Mattii GB. 2019. Effects of Ascophyllum nodosum extract on Vitis vinifera: consequences on plant physiology, grape quality and secondary metabolism. Plant Physiol Biochem. 139:21–32. doi:10.1016/j.plaphy.2019.03.002.
  • Sarker U, Oba S. 2018. Catalase, superoxide dismutase and ascorbate-glutathione cycle enzymes confer drought tolerance of Amaranthus tricolor. Sci Rep. 8:16496. doi:10.1038/s41598-018-34944-0.
  • Shahzad R, Ewas M, Harlina PW, Khan SU, Zhenyuan P, Nie X, Nishawy E. 2021b. β-Sitosterol differentially regulates key metabolites for growth improvement and stress tolerance in rice plants during prolonged UV-B stress. Journal of Genetic Engineering and Biotechnology. 19:79. doi:10.1186/s43141-021-00183-6.
  • Shahzad R, Harlina PW, Ewas M, Zhenyuan P, Nie X, Gallego PP, Ullah Khan S, Nishawy E, Khan AH, Jia H. 2021a. Foliar applied 24-epibrassinolide alleviates salt stress in rice (Oryza sativaL.) by suppression of ABA levels and upregulation of secondary metabolites. Journal of Plant Interactions. 16:533–549. doi:10.1080/17429145.2021.2002444.
  • Sharma A, Kumar V, Shahzad B, Ramakrishnan M, Singh Sidhu GP, Bali AS, Handa N, Kapoor D, Yadav P, Khanna K, et al. 2020. Photosynthetic response of plants under different abiotic stresses: a review. J Plant Growth Regul. 39:509–531. doi:10.1007/s00344-019-10018-x.
  • Sheteiwy MS, Shao H, Qi W, Hamoud YA, Shaghaleh H, Khan NU, Yang R, Tang B. 2019. GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci. 20:5709. doi:10.3390/ijms20225709.
  • Shi-chu L, Yong J, Ma-bo L, Zhu W-X, Nan X, Hui-hui Z. 2019. Improving plant growth and alleviating photosynthetic inhibition from salt stress using AMF in alfalfa seedlings. Journal of Plant Interactions. 14:482–491. doi:10.1080/17429145.2019.1662101.
  • Shin YK, Bhandari SR, Jo JS, Song JW, Cho MC, Yang EY, Lee JG. 2020. Response to salt stress in lettuce: changes in chlorophyll fluorescence parameters, phytochemical contents, and antioxidant activities. Agronomy. 10:1627. doi:10.3390/agronomy10111627.
  • Shrivastava P, Kumar R. 2015. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J Biol Sci. 22:123–131. doi:10.1016/j.sjbs.2014.12.001.
  • Shukla PS, Mantin EG, Adil M, Bajpai S, Critchley AT, Prithiviraj B. 2019. Ascophyllum nodosum-based biostimulants: sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Front Plant Sci. 10:655. doi:10.3389/fpls.2019.00655.
  • Shukla PS, Prithiviraj B. 2021. Ascophyllum nodosum biostimulant improves the growth of zea mays grown under phosphorus impoverished conditions. Front Plant Sci. 11:601843. doi:10.3389/fpls.2020.601843.
  • Singh A. 2022. Soil salinity: A global threat to sustainable development. Soil Use Manag. 38:39–67. doi:10.1111/sum.12772.
  • Soltabayeva A, Ongaltay A, Omondi JO, Srivastava S. 2021. Morphological, physiological and molecular markers for salt-stressed plants. Plants. 10:243. doi:10.3390/plants10020243.
  • Staykov NS, Angelov M, Petrov V, Minkov P, Kanojia A, Guinan KJ, Alseekh S, Fernie AR, Sujeeth N, Gechev TS. 2021. An Ascophyllum nodosum-derived biostimulant protects model and crop plants from oxidative stress. Metabolites. 11:24. doi:10.3390/metabo11010024.
  • Sulochana SB, Arumugam M. 2020. Targeted metabolomic and biochemical changes during nitrogen stress mediated lipid accumulation in scenedesmus quadricauda CASA CC202. Front Bioeng Biotechnol. 8:585632. doi:10.3389/fbioe.2020.585632.
  • Thu TTP, Yasui H, Yamakawa T. 2017. Effects of salt stress on plant growth characteristics and mineral content in diverse rice genotypes. Soil Sci Plant Nutr. 63:264–273.
  • Velikova V, Yordanov I, Edreva A. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci. 151:59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Vuorinen I, Hänninen J, Rajasilta M, Laine P, Eklund J, Montesino-Pouzols F, Corona F, Junker K, Meier HEM, Dippner JW. 2015. Scenario simulations of future salinity and ecological consequences in the Baltic Sea and adjacent North Sea areas–implications for environmental monitoring. Ecol Indic. 50:196–205. doi:10.1016/j.ecolind.2014.10.019.
  • West JS, Townsend JA, Stevens M, Fitt BD. 2012. Comparative biology of different plant pathogens to estimate effects of climate change on crop diseases in Europe. Eur J Plant Pathol. 133(1):315–331. doi:10.1007/s10658-011-9932-x.
  • Xu N, Liu S, Lu Z, Pang S, Wang L, Wang L, Li W. 2020. Gene expression profiles and flavonoid accumulation during salt stress in ginkgo biloba seedlings. Plants. 9:1162. doi:10.3390/plants9091162.
  • Xu W, Dou Y, Geng H, Fu J, Dan Z, Liang T, Cheng M, Zhao W, Zeng Y, Hu Z, Huang W. 2022. OsGRP3 enhances drought resistance by altering phenylpropanoid biosynthesis pathway in rice (Oryza sativa L.). Int J Mol Sci. 23(13):7045. doi:10.3390/ijms23137045.
  • Yildiztekin M, Tuna AL, Kaya C. 2018. Physiological effects of the brown seaweedAscophyllum nodosum)and humic substances on plant growth, enzyme activities of certain pepper plants grown under salt stress. Acta Biol Hung. 69:325–335. doi:10.1556/018.68.2018.3.8.
  • Yin F, Zhang S, Cao B, Xu K. 2021. Low pH alleviated salinity stress of ginger seedlings by enhancing photosynthesis, fluorescence, and mineral element contents. PeerJ. 9:e10832. doi:10.7717/peerj.10832.
  • Yu A, Zhao J, Wang Z, Cheng K, Zhang P, Tian G, Liu X, Guo E, Du Y, Wang Y. 2020. Transcriptome and metabolite analysis reveal the drought tolerance of foxtail millet significantly correlated with phenylpropanoids-related pathways during germination process under PEG stress. BMC Plant Biol. 20:274. doi:10.1186/s12870-020-02483-4.
  • Yu S, Yang F, Zou Y, Yang Y, Li T, Chen S, Wang Y, Xu K, Xia H, Luo L. 2022. Overexpressing PpBURP2 in rice increases plant defense to abiotic stress and bacterial leaf blight. Front Plant Sci. 13:812279. doi:10.3389/fpls.2022.812279.
  • Zelm E, Zhang Y, Testerink C. 2020. Salt tolerance mechanisms of plants. Annu Rev Plant Biol. 71:403–433. doi:10.1146/annurev-arplant-050718-100005.