1,213
Views
12
CrossRef citations to date
0
Altmetric
Articles

The changes and relationship of structure and functional properties of rabbit myosin during heat-induced gelation

Cambios y relación de la estructura y las propiedades funcionales de la miosina de conejo durante la gelificación inducida por calor

, , , &
Pages 63-68 | Received 25 Feb 2014, Accepted 07 Apr 2014, Published online: 25 Jun 2014

References

  • Andrade, M. A., Chacón, P., Merelo, J., & Morán, F. (1993). Evaluation of secondary structure of proteins from UV circular dichroism spectra using an unsupervised learning neural network. Protein Engineering Design and Selection, 6, 383–390. doi:10.1093/protein/6.4.383
  • Bourne, M. (1978). Texture profile analysis. Food Technology, 32, 62–66, 72.
  • Chan, J. K., Gill, T. A., & Paulson, A. T. (1992). The dynamics of thermal denaturation of fish myosins. Food Research International, 25, 117–123. doi:10.1016/0963-9969(92)90152-U
  • Choi, S. M., & Ma, C. Y. (2007). Structural characterization of globulin from common buckwheat (Fagopyrum esculentum Moench) using circular dichroism and Raman spectroscopy. Food Chemistry, 102, 150–160. doi:10.1016/j.foodchem.2006.05.011
  • Feng, Y., & Hultin, H. O. (2001). Effect of ph on the rheological and structural properties of gels of water-washed chicken-breast muscle at physiological ionic strength. Journal of Agricultural and Food Chemistry, 49, 3927–3935. doi:10.1021/jf001021f
  • Fukushima, H., Satoh, Y., Yoon, S. H., Togashi, M., Nakaya, M., & Watabe, S. (2005). Rheological properties of fast skeletal myosin rod and light meromyosin from walleye pollack and white croaker: contribution of myosin fragments to thermal gel formation. Journal of Agricultural and Food Chemistry, 53, 9193–9198. doi:10.1021/jf051223h
  • Greenfield, N. J. (1996). Methods to estimate the conformation of proteins and polypeptides from circular dichroism data. Analytical Biochemistry, 235, 1–10. doi:10.1006/abio.1996.0084
  • Han, M. Y., Zhang, Y. J., Fei, Y., Xu, X. L., & Zhou, G. H. (2009). Effect of microbial transglutaminase on NMR relaxometry and microstructure of pork myofibrillar protein gel. European Food Research and Technology, 228, 665–670. doi:10.1007/s00217-008-0976-x
  • Hermansson, A. M., & Buchheim, W. (1981). Characterization of protein gels by scanning and transmission electron microscopy A methodology study of soy protein gels. Journal of Colloid and Interface Science, 81, 519–530. doi:10.1016/0021-9797(81)90433-1
  • Hermansson, A. M., Harbitz, O., & Langton, M. (1986). Formation of two types of gels from bovine myosin. Journal of the Science of Food and Agriculture, 37, 69–84. doi:10.1002/jsfa.2740370111
  • Johnson, W. C. (1988). Secondary structure of proteins through circular dichroism spectroscopy. Annual Review of Biophysics and Biophysical Chemistry, 17, 145–166. doi:10.1146/annurev.bb.17.060188.001045
  • Ker, Y. C., & Toledo, R. T. (1992). Influence of shear treatments on consistency and gelling properties of whey protein isolate suspensions. Journal of Food Science, 57, 82–85,90. doi:10.1111/j.1365-2621.1992.tb05430.x
  • King, L., Seidel, J. C., & Lehrer, S. S. (1995). Unfolding domains in smooth muscle myosin rod. Biochemistry, 34, 6770–6774. doi:10.1021/bi00020a023
  • Kocher, P. N., & Foegeding, E. A. (1993). Microcentrifuge-based method for measuring water-holding of protein gels. Journal of Food Science, 58, 1040–1046. doi:10.1111/j.1365-2621.1993.tb06107.x
  • Li-Chan, E., & Nakai, S. (1991). Raman spectroscopic study of thermally and/or dithiothreitol induced gelation of lysozyme. Journal of Agricultural and Food Chemistry, 39, 1238–1245. doi:10.1021/jf00007a009
  • Liu, R., Zhao, S. M., Xiong, S. B., Xie, B. J., & Qin, L. H. (2008). Role of secondary structures in the gelation of porcine myosin at different ph values. Meat Science, 80, 632–639. doi:10.1016/j.meatsci.2008.02.014
  • Maltais, A., Remondetto, G. E., & Subirade, M. (2008). Mechanisms involved in the formation and structure of soya protein cold-set gels: A molecular and supramolecular investigation. Food Hydrocolloids, 22, 550–559. doi:10.1016/j.foodhyd.2007.01.026
  • Samejima, K., Ishioroshi, M., & Yasui, T. (1981). Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. Journal of Food Science, 46, 1412–1418. doi:10.1111/j.1365-2621.1981.tb04187.x
  • Sánchez-González, I., Carmona, P., Moreno, P., Borderías, J., Sánchez-Alonso, I., Rodríguez-Casado, A., & Careche, M. (2008). Protein and water structural changes in fish Surimi during gelation as revealed by isotopic H/D exchange and Raman spectroscopy. Food Chemistry, 106, 56–64. doi:10.1016/j.foodchem.2007.05.067
  • Sano, T., Noguchi, S. F., Matsumoto, J. J., & Tsuchiya, T. (1990). Thermal gelation characteristics of myosin subfragments. Journal of Food Science, 55, 55–58. doi:10.1111/j.1365-2621.1990.tb06015.x
  • Wang, C., & Damodaran, S. (1991). Thermal gelation of globular proteins: influence of protein conformation on gel strength. Journal of Agricultural and Food Chemistry, 39, 433–438. doi:10.1021/jf00003a001
  • Wang, S. F., & Smith, D. M. (1994). Heat-induced denaturation and rheological properties of chicken breast myosin and f-actin in the presence and absence of pyrophosphate. Journal of Agricultural and Food Chemistry, 42, 2665–2670. doi:10.1021/jf00048a003
  • Westphalen, A. D., Briggs, J. L., & Lonergan, S. M. (2005). Influence of pH on rheological properties of porcine myofibrillar protein during heat induced gelation. Meat Science, 70, 293–299. doi:10.1016/j.meatsci.2005.01.015
  • Westphalen, A. D., Briggs, J. L., & Lonergan, S. M. (2006). Influence of muscle type on rheological properties of porcine myofibrillar protein during heat-induced gelation. Meat Science, 72, 697–703. doi:10.1016/j.meatsci.2005.09.021
  • Whitmore, L., & Wallace, B. (2004). DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data. Nucleic Acids Research, 32, W668–W673. doi:10.1093/nar/gkh371
  • Xiong, Y. L. (1997). Structure-function relationships of muscle protein. In S. Damodaran & A. Paraf (Eds.), Food protein and their application (pp. 341–391). New York: Marcel Dekker, Inc.
  • Xiong, Y. L., & Blanchard, S. P. (1994). Myofibrillar protein gelation: viscoelastic changes related to heating procedures. Journal of Food Science, 59, 734–738. doi:10.1111/j.1365-2621.1994.tb08115.x
  • Xiong, Y. L., & Brekke, C. J. (1990). Thermal transitions of salt-soluble proteins from pre- and postrigor chicken muscles. Journal of Food Science, 55, 1540–1543. doi:10.1111/j.1365-2621.1990.tb03563.x
  • Xu, X. L., Han, M. Y., Fei, Y., & Zhou, G. H. (2011). Raman spectroscopic study of heat-induced gelation of pork myofibrillar proteins and its relationship with textural characteristic. Meat Science, 87, 159–164. doi:10.1016/j.meatsci.2010.10.001
  • Yamamoto, K. (1990). Electron microscopy of thermal aggregation of myosin. Journal of Biochemistry, 108, 896–898.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.