1,216
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

Isolation and identification of highly active anticholinesterase ingredients from fermented soybean products

Aislamiento e identificación de ingredientes de la anticolinesterasa altamente activos en productos de soja fermentados

, , , &
Pages 220-225 | Received 13 Mar 2016, Accepted 12 Sep 2016, Published online: 11 Jan 2017

References

  • Adewusi, E.A., Moodley, N., & Steenkamp, V. (2011). Antioxidant and acetylcholinesterase inhibitory activity of selected southern African medicinal plants. South African Journal of Botany, 77(3), 638–644. doi:10.1016/j.sajb.2010.12.009
  • Aidoo, A.Y., & Ward, K. (2006). Spatio-temporal concentration of acetylcholine in vertebrate synaptic cleft. Mathematical & Computer Modelling, 44(9–10), 952–962. doi:10.1016/j.mcm.2006.03.003
  • Aremu, A.O., Amoo, S.O., Ndhlala, A.R., Finnie, J.F., & Staden, J.V. (2011). Antioxidant activity, acetylcholinesterase inhibition, iridoid content and mutagenic evaluation of leucosidea sericea. Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association, 49(5), 1122–1128. doi:10.1016/j.fct.2011.02.003
  • Chao, S.-H., Tomii, Y., Watanabe, K., & Tsai, Y.-C. (2008). Diversity of lactic acid bacteria in fermented brines used to make stinky tofu. International Journal of Food Microbiology, 123(1–2), 134–141. doi:10.1016/j.ijfoodmicro.2007.12.010
  • Chen, J., Cheng, Y.-Q., Yamaki, K., & Li, L.-T. (2007). Anti-α-glucosidase activity of Chinese traditionally fermented soybean (douchi). Food Chemistry, 103(4), 1091–1096. doi:10.1016/j.foodchem.2006.10.003
  • Chen, J., Quan, M.-H., Cheng, Y.-Q., Sun, J., & Li, L.-T. (2012). Acetylcholinesterase inhibitory activity of Chinese sufu (fermented tofu) ethanol-extract. Food Chemistry, 134(3), 1263–1266. doi:10.1016/j.foodchem.2012.02.141
  • Cho, Y.-S., Kim, S.-K., Ahn, C.-B., & Je, J.-Y. (2011). Inhibition of acetylcholinesterase by gallic acid- grafted -chitosans. Carbohydrate Polymers, 84(1), 690–693. doi:10.1016/j.carbpol.2010.12.040
  • Ellman, G.L., Courtney, K.D., Andres, V., Jr, & Featherstone, R.M. (1961). A new and rapid colorimetric determination of acetylcholinesterase activity. Biochemical Pharmacology, 7(2), 88–95. doi:10.1016/0006-2952(61)90145-9
  • Garhyan, P., Mahecha-Botero, A., & Elnashaie, S.S.E.H. (2006). Complex bifurcation/chaotic behavior of acetylcholinesterase and cholineacetyltransferase enzymes system. Applied Mathematical Modelling, 30(9), 824–853. doi:10.1016/j.apm.2005.06.009
  • Han, B., Cao, C.-F., Rombouts, F.M., & Nout, M.J.R. (2004). Microbial changes during the production of sufu – a Chinese fermented soybean food. Food Control, 15(4), 265–270. doi:10.1016/S0956-7135(03)00066-5
  • Kinjo, J.-E., Furusawa, J.-I., Baba, J., Takeshita, T., Yamasaki, M., & Nohara, T. (1987). Studies on the constituents of Pueraria lobata. iii. isoflavonoids and related compounds in the roots and the voluble stems. Chemical & Pharmaceutical Bulletin, 35(12), 4846–4850. doi:10.1248/cpb.35.4846
  • Lenigk, R., Lam, E., Lai, A., Wang, H., Han, Y., Carlier, P., & Renneberg, R. (2000). Enzyme biosensor for studying therapeutics of Alzheimer’s disease. Biosensors & Bioelectronics, 15(9–10), 541–547. doi:10.1016/S0956-5663(00)00078-6
  • Ma, X., & Gang, D.R. (2008). In vitro production of huperzine a, a promising drug candidate for Alzheimer’s disease. Phytochemistry, 69(10), 2022–2028. doi:10.1016/j.phytochem.2008.04.017
  • Markham, K.R., Ternai, B., Stanley, R., Geiger, H., & Mabry, T.J. (1978). Carbon-13 nmr studies of flavonoids—iii: Naturally occurring flavonoid glycosides and their acylated derivatives. Tetrahedron, 34(9), 1389–1397. doi:10.1016/0040-4020(78)88336-7
  • Moy, Y.-S., Lu, T.-J., & Chou, C.-C. (2012). Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean. Journal of Bioscience & Bioengineering, 113(2), 196–201. doi:10.1016/j.jbiosc.2011.09.021
  • Moyo, M., Ndhlala, A.R., Finnie, J.F., & Staden, J.V. (2010). Phenolic composition, antioxidant and acetylcholinesterase inhibitory activities of sclerocarya birrea, and harpephyllum caffrum, (anacardiaceae) extracts. Food Chemistry, 123(1), 69–76. doi:10.1016/j.foodchem.2010.03.130
  • Orhan, I., Kartal, M., Naz, Q., Ejaz, A., Yilmaz, G., Kan, Y., … Iqbal Choudhary, M. (2007). Antioxidant and anticholinesterase evaluation of selected Turkish salvia, species. Food Chemistry, 103(4), 1247–1254. doi:10.1016/j.foodchem.2006.10.030
  • Orhan, I., & Üstün, O. (2011). Determination of total phenol content, antioxidant activity and acetylcholinesterase inhibition in selected mushrooms from Turkey. Journal of Food Composition & Analysis, 24(3), 386–390. doi:10.1016/j.jfca.2010.11.005
  • Racchi, M., Mazzucchelli, M., Porrello, E., Lanni, C., & Govoni, S. (2004). Acetylcholinesterase inhibitors: Novel activities of old molecules. Pharmacological Research, 50(4), 441–451. doi:10.1016/j.phrs.2003.12.027
  • Rahim, F., Ullah, H., Taha, M., Wadood, A., Javed, M.T., Rehman, W., … Khan, K.M. (2016). Synthesis and in vitro, acetylcholinesterase and butyrylcholinesterase inhibitory potential of hydrazide based schiff bases. Bioorganic Chemistry, 68, 30–40. doi:10.1016/j.bioorg.2016.07.005
  • Sacan, O., & Yanardag, R. (2010). Antioxidant and antiacetylcholinesterase activities of chard (beta vulgaris, l. var. cicla). Food & Chemical Toxicology An International Journal Published for the British Industrial Biological Research Association, 48(5), 1275–1280. doi:10.1016/j.fct.2010.02.022
  • Sancheti, S., Sancheti, S., Um, B.-H., & Seo, S.-Y. (2010). 1,2,3,4,6-penta-o-galloyl-β-d-glucose: A cholinesterase inhibitor from Terminalia chebula. South African Journal of Botany, 76(2), 285–288. doi:10.1016/j.sajb.2009.11.006
  • Stasiuk, M., Bartosiewicz, D., & Kozubek, A. (2008). Inhibitory effect of some natural and semisynthetic phenolic lipids upon acetylcholinesterase activity. Food Chemistry, 108(3), 996–1001. doi:10.1016/j.foodchem.2007.12.011
  • Tsai, Y.-H., Kung, H.-F., Chang, S.-C., Lee, T.-M., & Wei, C.-I. (2007). Histamine formation by histamine-forming bacteria in douchi, a Chinese traditional fermented soybean product. Food Chemistry, 103(4), 1305–1311. doi:10.1016/j.foodchem.2006.10.036
  • Wang, D., Wang, L.-J., Zhu, F.-X., Zhu, J.-Y., Chen, X.D., Zou, L., … Li, L.-T. (2008). In vitro, and in vivo, studies on the antioxidant activities of the aqueous extracts of douchi (a traditional Chinese salt-fermented soybean food). Food Chemistry, 107(4), 1421–1428. doi:10.1016/j.foodchem.2007.09.072
  • Wang, L.-J., Yin, L.-J., Li, D., Zou, L., Saito, M., Tatsumi, E., & Li, L.-T. (2007). Influences of processing and Nacl supplementation on isoflavone contents and composition during douchi manufacturing. Food Chemistry, 101(3), 1247–1253. doi:10.1016/j.foodchem.2006.03.029
  • Yoon, N. Y., Ngo, D. N., & Kim, S. K. (2009). Acetylcholinesterase inhibitory activity of novel chitooligosaccharide derivatives. Carbohydrate Polymers, 78(4), 869–872. doi:10.1016/j.carbpol.2009.07.004
  • Zhang, J.-H., Tatsumi, E., Ding, C.-H., & Li, L.-T. (2006). Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product. Food Chemistry, 98(3), 551–557. doi:10.1016/j.foodchem.2005.06.024
  • Zhang, P., Chen, L., Gu, W., Xu, Z., Gao, Y., & Li, Y. (2007). In vitro and in vivo evaluation of donepezil-sustained release microparticles for the treatment of Alzheimer’s disease. Biomaterials, 28(10), 1882–1888. doi:10.1016/j.biomaterials.2006.12.016