2,411
Views
12
CrossRef citations to date
0
Altmetric
Articles

FT-MIR spectroscopy and multivariate analysis for determination of bioactive compounds and antioxidant capacity in Cabernet Sauvignon wines

Espectroscopia FT-MIR y análisis multivariante para la determinación de compuestos bioactivos y capacidad antioxidante en vinos Cabernet Sauvignon

, , , &
Pages 561-569 | Received 02 Aug 2017, Accepted 09 Jan 2018, Published online: 14 Mar 2018

References

  • Aleixandre, J. (2003). La cultura del vino, cata y degustación [Wine culture and tasting] (pp. 361). Valencia, ES: Universitat Politecnica de Valencia, Servicio de publicaciones.
  • Atanacković, M. (2013). Analysis of phenolic content and antioxidative capacity of red wines from Serbia. In L. Č. Popović, M. Vidaković, & D. S. Kostić (Eds.), Resources of Danubian Región: The possibility of cooperation and utilization (pp. 10–16). Belgrade, RS: Humboldt-Club Serbien.
  • Bevilacqua, M., Bucci, R., Materazzi, S., & Marini, F. (2013). Application of near infrared (NIR) spectroscopy coupled to chemometrics for dried egg-pasta characterization and egg content quantification. Food Chemistry, 140(4), 726–734. doi:10.1016/j.foodchem.2012.11.018
  • Bevin, C. J., Fergusson, A. J., Perry, W. B., Janik, L. J., & Cozzolino, D. (2006). Development of a rapid “fingerprinting” system for wine authenticity by mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 54(26), 9713–9718. doi:10.1021/jf062265o
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology, 28(1), 25–30. doi:10.1016/S0023-6438(95)80008-5
  • Chira, K., Pacella, N., Jourdes, M., & Teissedre, P. L. (2011). Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation wine age. Food Chemistry, 126(4), 1971–1977. doi:10.1016/j.foodchem.2010.12.056
  • Coates, J. (2006). Interpretation of infrared spectra: A practical approach. In R. A. Meyers (Ed.), Encyclopedia of analytical chemistry (pp. 1–23). Chichester, UK: John Wiley and Sons.
  • Cozzolino, D. (2015). Sample presentation, sources of error and future perspectives on the application of vibrational spectroscopy in the wine industry. Journal of the Science of Food and Agriculture, 95, 861–868. doi:10.1002/jsfa.6733
  • Dávalos, A., & Lasunción, M. A. (2009). Health-promoting effects of wine phenolics. In M. V. Moreno-Arribas & M. C. Polo (Eds.), Wine chemistry and biochemistry (pp. 571–591). New York, NY: Springer.
  • Di Egidio, V., Sinelli, N., Giovanelli, G., Moles, A., & Casiraghi, E. (2010). NIR and MIR spectroscopy as rapid methods to monitor red wine fermentation. European Food Research and Technology, 230(6), 947–955. doi:10.1007/s00217-010-1227-5
  • Edelmann, A., & Lendl, B. (2002). Toward the optical tongue: Flow-through sensing of tannin-protein interactions based on FTIR spectroscopy. Journal of the American Chemical Society, 124(49), 14741–14747. doi:10.1021/ja026309v
  • Favre, G., Charamelo, D., & González-Neves, G. (2013). Empleo de taninos enológicos y maceración prefermentativa en frío en una experiencia de elaboración de vinos Tannat [Use of oenological tannins and cold prefermentative maceration in a Tannat winemaking experiment]. Agrociencia Uruguay, 17(1), 65–73. Retrieved from http://www.scielo.edu.uy/scielo.php?script=sci_arttext&pid=S2301-15482013000100007.
  • Fernandez, K., & Agosin, E. (2007). Quantitative analysis of red wine tannins using fourier-transform mid-infrared spectrometry. Journal of Agricultural and Food Chemistry, 55(18), 7294–7300. doi:10.1021/jf071193d
  • Fotakis, C., Christodouleas, D., Zervou, M., Papadopoulos, K., & Calokerinos, A. C. (2012). Classification of wines based on different antioxidant responses to spectrophotometric analytical methods. Analytical Letters, 45(5–6), 581–591. doi:10.1080/00032719.2011.649456
  • Fragoso, S., Aceña, L., Guasch, J., Mestres, M., & Busto, O. (2011). Quantification of phenolic compounds during red winemaking using FT-MIR spectroscopy and PLS-regression. Journal of Agricultural and Food Chemistry, 59(20), 10795–10802. doi:10.1021/jf201973e
  • Granato, D., Katayama, F. C. U., & Castro, I. A. (2010). Assessing the association between phenolic compounds and the antioxidant activity of Brazilian red wines using chemometrics. LWT-Food Science and Technology, 43(10), 1542–1549. doi:10.1016/j.lwt.2010.05.031
  • Hosu, A., Vasile-Mircea, C., & Cimpoiu, C. (2014). Analysis of total phenolic, flavonoids, anthocyanins and tannins content in Romanian red wines: Prediction of antioxidant activities and classification of wines using artificial neural networks. Food Chemistry, 150, 113–118. doi:10.1016/j.foodchem.2013.10.153
  • International Oenological Codex. (2015). Oenological tannins. COEI-1-TANINS: 2015. OIV-Oeno 554–2015). Paris, FR: Organisation Internationale de la Vigne et du Vin (OIV).
  • Ivanova-Petropulus, P. V., Hermosín-Gutierrez, I., Boros, B., Stefova, M., Stafilov, T., Vojnoski, B., … Kilár, F. (2015). Phenolic compounds and antioxidant activity of Macedonian red wines. Journal of Food Composition and Analysis, 41, 1–14. doi:10.1016/j.jfca.2015.01.002
  • Jackson, R. S. (2016). Wines: Wine and health. In B. Caballero, P. M. Finglas, & F. Toldrá (Eds.), Encyclopedia of food and health (pp. 562–571). Oxford, UK: Academic Press.
  • Kang, N. J., Shin, S. H., Lee, K. W., & Lee, H. J. (2011). Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacology and Therapeutics, 130(3), 310–324. doi:10.1016/j.pharmthera.2011.02.004
  • Kramling, T. E., & Singleton, V. L. (1969). An estimate of the nonflavonoid phenols in wines. American Journal of Enology and Viticulture, 20, 86–92.
  • Laghi, L., Versari, A., Parpinello, G. P., Nakaji, D. Y., & Boulton, R. B. (2011). FTIR spectroscopy and direct orthogonal signal correction preprocessing applied to selected phenolic compounds in red wines. Food Analytical Methods, 4(4), 619–625. doi:10.1007/s12161-011-9240-2
  • Larkin, P. J. (2011). Infrared and Raman spectroscopy: Principles and spectral interpretation. Waltham, MA: Elsevier.
  • Li, H., Wang, X., Li, Y., Li, P., & Wang, H. (2009). Polyphenolic compounds and antioxidant properties of selected China wines. Food Chemistry, 112(2), 454–460. doi:10.1016/j.foodchem.2008.05.111
  • Lima, D. B. D., Agustini, B. C., Silva, E. G. D., Gaensly, F., Cordeiro, R. B., Fávero, M. L. D., … Bonfim, T. M. B. (2011). Evaluation of phenolic compounds content and in vitro antioxidant activity of red wines produced from Vitis labrusca grapes. Food Science and Technology, 31(3), 783–800. doi:10.1590/S0101-20612011000300038
  • Medina-Albaladejo, F. J., Martínez-Carrión, J. M., & Ramón-Muñoz, J. M. (2014). The world wine market and the competitiveness of the southern hemisphere countries, 1961-2010. América Latina En La Historia Económica, 21(2), 40–83. Retrieved from http://www.scielo.org.mx/pdf/alhe/v21n2/v21n2a2.pdf.
  • Monagas, M., Gómez-Cordovés, C., & Bartolomé, B. (2006). Evolution of the phenolic content of red wines from Vitis vinifera L. during ageing in bottle. Food Chemistry, 95(3), 405–412. doi:10.1016/j.foodchem.2005.01.004
  • Naes, T., Isaksson, T., Fearn, T., & Davies, T. (2004). A user-friendly guide to Multivariate Calibration and Classification. Chichester, UK: NIR Publications.
  • Ozturk, B., Yucesoy, D., & Ozen, B. (2012). Application of mid-infrared spectroscopy for the measurement of several quality parameters of alcoholic beverages, wine and raki. Food Analytical Methods, 5(6), 1435–1442. doi:10.1007/s12161-012-9397-3
  • Patz, C. D., Blieke, A., Ristow, R., & Dietrich, H. (2004). Application of FT-MIR spectrometry in wine analysis. Analytica Chimica Acta, 513(1), 81–89. doi:10.1016/j.aca.2004.02.051
  • Pedro, A. M., & Ferreira, M. M. (2007). Simultaneously calibrating solids, sugars and acidity of tomato products using PLS2 and NIR spectroscopy. Analytica Chimica Acta, 595(1), 221–227. doi:10.1016/j.aca.2007.03.036
  • Pellegrini, N., Simonetti, P., Gardana, C., Brenna, O., Brighenti, F., & Pietta, P. (2000). Polyphenol content total antioxidant activity of vini novelli (young red wine). Journal of Agricultural and Food Chemistry, 48(3), 732–735. doi:10.1021/jf990251v
  • PerkinElmer. (1991). Spectrum quant+ software for quantitative multicomponent analysis using chemometric methods: Tutorial. Waltham, MA: Author.
  • Porgali, E., & Büyüktuncel, E. (2012). Determination of phenolic composition and antioxidant capacity of native red wines by high performance liquid chromatography and spectrophotometric methods. Food Research International, 45(1), 145–154. doi:10.1016/j.foodres.2011.10.025
  • Preserova, J., Ranc, V., Milde, D., Kubistova, V., & Stavek, J. (2015). Study of phenolic profile and antioxidant activity in selected Moravian wines during winemaking process by FT-IR spectroscopy. Journal of Food Science and Technology, 52(10), 6405–6414. doi:10.1007/s13197-014-1644-8
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9–10), 1231–1237. doi:10.1016/S0891-5849(98)00315-3
  • Ribéreau-Gayon, P., Glories, Y., Maujean, A., & Dubordieu, D. (2006). Handbook of enology, 2nd ed. Chichester, UK: John Wiley and Sons.
  • SAGARPA, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. (2011). Estudio de demanda de uva de mesa Mexicana [Study of the demand for Mexican table grapes]. Retrieved from http://www.sagarpa.gob.mx/agronegocios/Documents/Estudios_promercado/ESTUDIO_UVA.pdf
  • Shenk, J. S., & Westerhaus, M. O. (1996). Near infrared spectroscopy: The future waves. In: A. M. C. Davies & P. Williams (Eds.), Proceedings of the 7th International Conference on Near Infrared Spectroscopy (pp. 198–202). Montreal, CA: NIR Publications.
  • Silva, S. D., Feliciano, R. P., Boas, L. V., & Bronze, M. R. (2014). Application of FTIR-ATR to Moscatel dessert wines for prediction of total phenolic and flavonoid contents and antioxidant capacity. Food Chemistry, 150, 489–493. doi:10.1016/j.foodchem.2013.11.028
  • Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic–Phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
  • Socrates, G. (2001). Infrared and Raman characteristic group frequencies: Tables and charts. Chichester, UK: John Wiley and Sons.
  • Soleas, G. J., Diamandis, E. P., & Goldberg, D. M. (1997). Wine as a biological fluid: History, production, and role in disease prevention. Journal of Clinical Laboratory Analysis, 11(5), 287–313. doi:10.1002/(SICI)1098-2825(1997)11:5<287::AID-JCLA6>3.0.CO;2-4
  • Soto-Vázquez, E., Río-Segade, S., & Orriols-Fernández, I. (2010). Effect of the winemaking technique on phenolic composition and chromatic characteristics in young red wines. European Food Research Technology, 231(5), 789–802. doi:10.1007/s00217-010-1332-5
  • Van Leeuw, R., Kevers, C., Pincemail, J., Defraigne, J., & Dommes, J. (2014). Antioxidant capacity and phenolic composition of red wines from various grape varieties: Specificity of pinot Noir. Journal of Food Composition and Analysis, 36(1–2), 40–50. doi:10.1016/j.jfca.2014.07.001
  • Versari, A., Parpinello, G. P., Scazzina, F., & Del Rio, D. (2010). Prediction of total antioxidant capacity of red wine by Fourier transform infrared spectroscopy. Food Control, 21(5), 786–789. doi:10.1016/j.foodcont.2009.11.001
  • Williams, P. C. (2001). Implementation of near-infrared technology. In P. C. Williams & K. H. Norris (Eds.), Near infrared technology in the agricultural and food industries (pp. 145–169). St. Paul, MN: American Association of Cereal Chemist.