1,387
Views
2
CrossRef citations to date
0
Altmetric
Articles

Novel debittering process of green table olives: application of β-glucosidase bound onto superparamagnetic nanoparticles

Innovador método de desamargado de aceitunas verdes de mesa: aplicación de β-glucosidasa adherida a nanopartículas superparamagnéticas

, , , , , & show all
Pages 840-847 | Received 27 Dec 2017, Accepted 11 Apr 2018, Published online: 06 Aug 2018

References

  • Alahakoon, T., Koh, J. W., Chong, X. W., & Lim, W. T. (2012). Immobilization of cellulases on amine and aldehyde functionalized Fe2O3 magnetic nano particles. Preparative Biochemistry and Biotechnology, 42, 234.
  • Altınyay, Ç., & Altun, M. L. (2006). HPLC analysis of oleuropein in Olea Europaea L. Journal of Faculty of Pharmacy of Ankara University, 35, 1–11.
  • Alu’datt, M. H., Alli, I., Ereifej, K., Alhamad, M., Al-Tawaha, A. R., & Rababah, T. (2010). Optimisation, characterisation and quantification of phenolic compounds in olive cake. Food Chemistry, 123, 117–122.
  • Bianchi, G. (2003). Lipids and phenols in table olives. European Journal of Lipid Science and Technology, 105, 229–242.
  • Bissett, F., & Sternberg, D. (1978). Immobilization of Aspergillus beta-glucosidase on chitosan. Applied and Environmental Microbiology, 35, 50–755. 0099-2240/78/0035-0750/$02.00/0
  • Brenes Balbuena, M., Garcia Garcia, P., & Garrido Fernandez, A. (1992). Phenolic compounds related to the black color for medduring the processing of ripe olives. Journal of Agricultural and Food Chemistry, 40, 1192–1196.
  • Brenes, M., Garcia, A., Garcia, P., & Garrido, A. (2001). Acid hydrolysis of secoiridoid aglycons during storage of virgin olive oil. Journal of Agricultural and Food Chemistry, 49, 5609–5614.
  • Brenes, M., Rejano, L., Garcia, P., Sanchez, A., & Hand Garrido, A. (1995). Biochemical changes in phenolic compounds during Spanish-style green olive processing. Journal of Agricultural and Food Chemistry, 43, 2702–2706.
  • Briante, R., Patumi, M., Febbraio, F., & Nucci, R. (2004). Production of highly purified hydroxytyrosol from Olea europaea leaf extract biotransformed by hyperthermophilic β-glycosidase. Journal of Biotechnology, 111, 67–77.
  • Charoenprasert, S., & Mitchell, A. (2012). Factors INflUENCING PHENOLIC COMPOUNDS IN TABLE OLIVES (Olea europaea). Journal of Agricultural and Food Chemistry, 60, 7081−7095.
  • Chen, D.-H., & Liao, M.-H. (2002). Preparation and characterization of YADH-bound magnetic nanoparticles. Journal of Molecular Catalysis B: Enzymatic, 16, 283–291.
  • Ciafardini, G., & Zullo, B. (2000). β-Glucosidase activity in olive brine during the microbiological debittering process. Advances in Food Sciences, 22, 100–106. 10.1.1.509.5911
  • Ciafardini, G., & Zullo, B. A. (2002). Microbiological activity in stored olive oil. International Journal of Food Microbiology, 75, 111–118.
  • Ciafardini, G., Zullo, B. A., & Cioccia, G. (2005). Effect of lipase-producing yeast on the oily fraction of microbiologically debittered table olives. European Journal of Lipid Science and Technology, 107, 851–856.
  • Cocolin, L., Alessandria, V., Botta, C., Gorra, R., De Filippis, F., Ercolini, D., & Rantsiou, K. (2013). NaOH-debittering induces changes in bacterial ecology during table olives fermentation. PloS One, 8(7), e69074.
  • Dagdelen, A., Tümen, G., Özcan, M. M., & Dündar, E. (2013). Phenolics profiles of olive fruits (Olea europaea L.) and oils from Ayvalık, Domat and Gemlik varieties at different ripening stages. Food Chemistry, 136, 41–45.
  • Esti, M., Cinquante, L., & La Notte, E. (1998). Phenolic compounds in different olive varieties. Journal of Agricultural and Food Chemistry, 46, 32–35.
  • Ganguli, K. L., Van Putte, K. P., & Turksma, H. (1999). Debittering of Olive Oil, US Patent, 5,998,641.
  • Gikas, E., Papadopoulos, N., & Tsarbopoulos, A. (2006). Kinetic study of the acidic hydrolysis of oleuropein, the major bioactive metabolite of olive oil. Journal of Liquid Chromatography & Related Technologies, 29, 497–508.
  • Guinda, Á. (2006). Grasas Y Aceites. Use of Solid Residue from the Olive Industry, (1), Enero-Marzo, 107–115.
  • Guiso, M., & Marra, C. (2005). Highlights in oleuropein aglycone structure. Natural Product Research, 19, 105–109.
  • Jemai, H., Bouaziz, M., Fki, I., El Feki, A., & Sayadi, S. (2008). Hypolipidimic and antioxidant activities of oleuropein and its hydrolysis derivative rich extracts from Chemlali olive leaves. Chemico-Biological Interactions, 176, 88–98.
  • Kara, H. E., Sinan, S., & Turan, Y. (2011). Purification of beta-glucosidase from olive (Olea europaeaL.) fruit tissue with specifically designed hydrophobic interaction chromatography and characterization of the purified enzyme. Journal of Chromatography B, 879, 1507–1512.
  • Karaagac, O., & Kockar, H. (2012). Effect of synthesis parameters on the properties of superparamagnetic iron oxide nanoparticles. Journal of Superconductivity and Novel Magnetism, 25(8), 2777–2781.
  • Karaagac, O., Kockar, H., Beyaz, S., & Tanrisever, T. (2010). A simple way to synthesize superparamagnetic iron oxide nanoparticles in air atmosphere: Iron ion concentration effect. IEEE Transactions on Magnetics, 46(12), 3978–3983.
  • Kockar, F., Beyaz S, Sinan, S., Kockar, H., Demir, D., Eryilmaz, S., Tanrisever, T., & Arslan, O. (2010). Paraoxonase 1-bound magnetic nanoparticles: Preparation and characterizations. Journal Of Nanoscience And Nanotechnology, 10(11), 7554–7559.
  • Kubo, A., Lunde, C. S., & Kubo, I. (1995). Antimicrobial activity of the olive oil flavor compounds. Journal of Agricultural and Food Chemistry, 43, 1629–1633.
  • Kumar, S., Jana, A. K., Dhamija, I., Singla, Y., & Maiti, M. (2013). Preparation, characterization and targeted delivery of serratiopeptidase immobilized on amino-functionalized magnetic nanoparticles. European Journal of Pharmaceutics and Biopharmaceutics, 85, 413–426.
  • Lavermicocca, P., Valerio, F., Lonigro, S. L., Baruzzi, F., Morea, M., & Gobetti, M. (2002). Acta Horticulturae, 586, 621–624.
  • Liburdi, K., Straniero, R., Benucci, I., Vittoria Garzillo, A. M., & Esti, M. (2012). Lysozyme immobilized on micro-sized magnetic particles: Kinetic parameters at wine pH. Applied Biochemistry and Biotechnology, 166, 1736.
  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry, 193, 256–275. classics1977/A1977DM02300001.pdf
  • Malik, N. S. A., & Bradford, J. M. (2006). Changes in oleuropein levels during differentiation and evelopment of floral buds in ‘Arbequina’ Olives. Scientia Horticulturae, 110, 274–278.
  • Marsilio, V., Lanza, B., & Pozzi, N. (1996). Progress in table olive debittering: Degradationin vitro of oleuropein and its derivatives by Lactobacillus plantarum. Journal of the American Oil Chemists’ Society, 73, 593–597.
  • Medina, E., Garcı´A, A., Romero, C., De Castro, A., & Brenes, M. (2009). Study of the anti-lactic acid bacteria compounds in table olives. International Journal of Food Science & Technology, 44, 1286–1291.
  • Onem, H., Cicek, S., & Nadaroglu, H. (2016). Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan Nan particles. CyTA – Journal of Food, 14(1), 74–83.
  • Ozel, F., & Kockar, H. (2015). Growth and characterizations of magnetic nanoparticles under hydrothermal conditions: Reaction time and temperature. Journal of Magnetism and Magnetic Materials, 373, 213–216.
  • Ozel, F., Kockar, H., & Karaagac, O. (2015). Growth of iron oxide nanoparticles by hydrothermal process: Effect of reaction parameters on the nanoparticle size. Journal of Superconductivity and Novel Magnetism, 28(3), 823–829.
  • Paiva-Martins, F., & Gordon, M. H. (2001). Isolation and characterization of the antioxidant component 3,4-dihydroxyphenylethyl 4-formyl-3-formylmethyl-4-hexenoate from olive (Olea europaea) leaves. Journal of Agricultural and Food Chemistry, 49, 4214–4219.
  • Pistarino, E., Aliakbarian, B., Casazza, A. A., Paini, M., Cosulich, M. E., & Perego, P. (2013). Combined effect of starter culture and temperature on phenolic compounds during fermentation of Taggiasca black olives. Food Chemistry, 138, 2043–2049.
  • Restuccia, C., Muccilli, S., Palmeri, R., Randazzo, C. L., Caggia, C., & Spagna, G. (2011). An alkaline β-glucosidase isolated from an olive brine strain of Wickerhamomyces anomalus. FEMS Yeast Research, 11(6), 487–493.
  • Romani, A., Mulinacci, N., Pinelli, P., Vincieri, F. F., & Cimato, A. (1999). Polyphenolic content in five tuscany cultivars of Olea europaea L. Journal of Agricultural and Food Chemistry, 47, 964–967.
  • Romero, C., Brenes, M., Garcia, P., Garcia, A., & Garrido, A. (2004a). Polyphenol changes during fermentation of naturally black olives. Journal of Agricultural and Food Chemistry, 52, 1973–1979.
  • Romero, C., Brenes, M., Yousfi, K., Garcia, P., Garcia, A., & Garrido, A. (2004b). Effect of cultivar and processing method on the contents of polyphenols in table olives. Journal of Agricultural and Food Chemistry, 52, 479–484.
  • Romero, C., Garcia, P., Brenes, M., Garcia, A., & Garrido, A. (2002). Phenolic compounds in natural black Spanish olive varieties. European Food Research and Technology, 215, 489–496.
  • Romero-Segura, C., Sanz, C., & Perez, A. G. (2009). Purification and characterization of an olive fruit beta-glucosidase involved in the biosynthesis of virgin olive oil phenolics. Journal of Agricultural and Food Chemistry, 57, 7983.
  • Ruiz-Barba, J. L., Brenes-Balbuena, M., Jiménez-Díaz, R., García-García, P., & Garrido Fernández, A. (1993). Inhibition of Lactobacillus plantarum by polyphenols extracted from two different kinds of olive brine. Journal of Applied Microbiology, 74(1), 15–19.
  • Savas, E., & Uylaser, V. (2013). Quality improvement of green table olive cv. ‘Domat’ (Olea europaea L.) grown in Turkey using different de-bittering methods. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 41(1), 269–275.
  • Soler-Rivas, C., Espin, J. C., & Wichers, H. J. (2000). Oleuropein and related compounds. Journal of the Science of Food and Agriculture, 80, 1013–1023.
  • Webb, G. A., Belton, P. S., Gil, A. M., Delgadillo, I., Capozzi, F., Cremonini, M. A., … Uccella, N. (2001). Oleuropein biomimetic conformations by magnetic resonance experiments and molecular mechanics and dynamics. Magnetic Resonance in Food Science: A View to the Future, 2001, 129–135.
  • Yorulmaz, A., Poyrazoglu, E. S., Özcan, M. M., & Tekin, A. (2012). Phenolic profiles of Turkish olives and olive oils. European Journal of Lipid Science and Technology, 114, 1083–1093.
  • Yu, C. C., Kuo, Y. Y., Liang, C. F., Chien, W. T., Wu, H. T., Chang, T. C., … Lin, C. C. (2012). Site-specific immobilization of enzymes on magnetic nanoparticles and their use in organic synthesis. Bioconjugate Chemistry, 23, 714−724.
  • Zhu, X., Ma, Y., Zhao, C., Lin, Z., Zhang, L., Chen, R., & Yang, W. A. (2014). Mild strategy to encapsulate enzyme into hydrogel layer grafted on polymeric substrate. Langmuir, 30, 15229−15237.