3,156
Views
8
CrossRef citations to date
0
Altmetric
Articles

Phytochemical characterization and antioxidant properties of the wild edible acerola Malpighia umbellata Rose

Caracterización fitoquímica y propiedades antioxidantes de la acerola silvestre Malpighia umbellata Rose

, , , , , , & show all
Pages 698-706 | Received 13 Mar 2018, Accepted 05 May 2018, Published online: 22 Jun 2018

References

  • Araújo, A. C., Oliveira, S. M., Ramos, I. N., Brandão, T. R. S., Monteiro, M. J., & Silva, C. L. M. (2017). Evaluation of drying and storage conditions on nutritional and sensory properties of dried galega kale (Brassica oleracea L. var. Acephala). Journal of Food Quality, 2017, 1–9.
  • Bajaj, K. L., & Kaur, G. (1981). Spectrophotometric determination of L-ascorbic acid in vegetables and fruits. Analyst, 106, 117–120.
  • Belwal, T., Devkota, H. P., Hassan, H. A., Ahluwalia, S., Ramadan, M. F., Mocan, A., & Atanasov, A. G. (2018). Phytopharmacology of Acerola (Malpighia spp.) and its potential as functional food. Trends in Food Science & Technology, 74, 99–106.
  • Campos, M. G., & Markham, K. R. (2007). Structure information from HPLC and on-line measured absorption spectra-flavone, flavonols and phenolic acids. Coimbra: Coimbra University Press.
  • De Rosso, V., Hillebrand, V., Montilla, S., Bobbio, E. C., Winterhalter, F. O., & Mercadante, A. Z. (2008). Determination of anthocyanins from acerola (Malpighia emarginata DC.) and acai (Euterpe oleracea Mart.) by HPLC-PDA-MS/MS. Journal of Food Composition and Analysis, 21, 291–299.
  • De Rosso, V. V., & Mercadante, A. Z. (2005). Carotenoid composition of two Brazilian genotypes of acerola (Malpighia punicifolia L.) from two harvests. Food Research International, 38, 1073–1077.
  • Delva, L., & Goodrich-Schneider, R. (2013). Antioxidant activity and antimicrobial properties of phenolic extracts from acerola (Malpighia emarginata DC) fruit. International Journal of Food Science and Technology, 48, 1048–1056.
  • Devi, K. P., Malar, D. S., Nabavi, S. F., Sureda, A., Xiao, J., Nabavi, S. M., & Daglia, M. (2015). Kaempferol and inflammation: From chemistry to medicine. Pharmacological Research, 99, 1–10.
  • Fracassetti, D., Costa, C., Moulay, L., & Tomás-Barberán, F. A. (2013). Ellagic acid derivatives, ellagitannins, proanthocyanidins and other phenolics, vitamin C and antioxidant capacity of two powder products from camu-camu fruit (Myrciaria dubia). Food Chemistry, 139, 578–588.
  • Galvez, R. L., Kwon, Y. I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. Bioresource Technology, 101, 4676–4689.
  • Giusti, M. M., & Wrolstad, R. E. (2001). Characterization and measurement of anthocyanins by UV-visible spectroscopy. In R. E. Wrolstad (Ed.), Currents protocols in food analytical chemistry (pp. F1: F1.2.1–F1.2.13). New York, NY: Wiley.
  • Hanamura, T., Hagiwara, T., & Kawagishi, H. (2005). Structural and functional characterization of polyphenols isolated from acerola (Malpighia emarginata DC.) fruit. Bioscience, Biotechnology, and Biochemistry, 69, 280–286.
  • Hanamura, T., Uchida, E., & Aoki, H. (2008). Changes of the composition in acerola (Malpighia emarginata DC.) fruit in relation to cultivar, growing region and maturity. Journal of the Science of Food and Agriculture, 88, 1813–1820.
  • Heller, W., & Forkmann, G. (1994). Biosynthesis of flavonoids. In J. B. Harborne (Ed.), The flavonoids. Advances in research since 1986 (pp. 499–535). London: Chapman and Hall.
  • Ho, G. T. T., Kase, E. T., Wangensteen, H., & Barsett, H. (2017). Phenolic elderberry extracts, anthocyanins, procyanidins, and metabolites influence glucose and fatty acid uptake in human skeletal muscle cells. Journal of Agricultural and Food Chemistry, 65, 2677–2685.
  • Horta, N. R., Khal, V. F. S., Sarmento, M. S., Nunes, M. F. S., Porto, C. R. M., de Andrade, V. M., … Da Silva, J. (2016). Protective effects of acerola juice on genotoxicity induced by iron in vivo. Genetics and Molecular Biology, 39, 122–128.
  • Hoyos, M. N., Sánchez-Patán, F., Masis, R. M., Martín-Álvarez, P. J., Ramírez, W. Z., Monagas, M. J., & Bartolomé, B. (2015). Phenolic assessment of Uncaria tomentosa L. (Cat’s Claw): Leaves, stem, bark and wood extracts. Molecules, 20, 22703–22717.
  • Julkunen-Tiitto, R. (1985). Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. Journal of Agricultural and Food Chemistry, 33, 213–217.
  • Kay, C. D., Pereira-Caro, G., Ludwig, I. A., Clifford, M. N., & Crozier, A. (2017). Anthocyanins and flavanones are more bioavailable than previously perceived: A review of recent evidence. Annual Review of Food Science and Technology, 8, 155–180.
  • Khatun, A., Rahman, M., Haque, T., Rahman, M. M., Akter, M., Akter, S., & Jhumur, A. (2014). Cytotoxicity potentials of eleven Bangladeshi medicinal plants. The Scientific World Journal, 2014, 1–7.
  • Kumari, M., & Jain, S. (2012). Tannins: An antinutrient with positive effect to manage diabetes. Research Journal of Recent Sciences, 1, 10–73.
  • Liu, J.-Q., Deng, -Y.-Y., Li, T.-Z., Han, Q., Li, Y., & Qiu, M.-H. (2014). Three new tetranorditerpenes from aerial parts of Acerola cherry (Malpighia emarginata). Molecules, 19, 2629–2636.
  • Liu, J.-Q., Peng, X.-R., Li, X.-Y., Li, T.-Z., Zhang, W.-M., Shi, L., … Qiu, M.-H. (2013). Norfriedelins A–C with acetylcholinesterase inhibitory activity from acerola tree (Malpighia emarginata). Organic Letters, 15, 1580–1583.
  • Maia, I. R. D. O., Trevisan, M. T. S., Silva, M. G. D. V., Breuer, A., & Owen, R. W. (2017). Content of total phenolic compounds, flavonoids and tannins in methanol extracts of the genus Senna Mill. from the northeast of Brazil and evaluation of antioxidant capacity. Journal of Pharmacognosy and Phytochemistry, 6, 1321–1325.
  • Malinowska, P., Gliszczyńska-Świgło, A., & Szymusiak, H. (2014). Protective effect of commercial acerola, willow, and rose extracts against oxidation of cosmetic emulsions containing wheat germ oil. European Journal of Lipid Science and Technology, 116, 1553–1562.
  • Marques, T. R., Caetano, A. A., Alves, D. S., Ramos, V. O., Simão, A. A., Carvalho, G. A., & Corrêa, A. D. (2016). Malpighia emarginata DC. bagasse acetone extract on Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Chilean Journal of Agricultural Research, 76, 55–61.
  • Medina-Medrano, J. R., Almaraz-Abarca, N., González-Elizondo, M. S., Uribe-Soto, J. N., González-Valdez, L. S., & Herrera-Arrieta, Y. (2015). Phenolic constituents and antioxidant properties of five wild species of Physalis (Solanaceae). Botanical Studies, 56(24), 1–13.
  • Meyer, F. K. (2000). Revision der gattung Malpighia L. (Malpighiaceae). Berlin: Phanerogamarum Monographie XXIII.
  • Mezadri, T., Fernández-Pachón, M. S., Villaño, D., García-Parrilla, M. C., & Troncoso, A. M. (2006). The acerola fruit: Composition, productive characteristics and economic importance. Archivos Latinoamericanos de Nutrición, 56(2), 101–109.
  • Mezadri, T. D., Villaño, D., Fernández-Pachón, M. S., García-Parrilla, M. C., & Troncoso, A. M. (2008). Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis, 21, 282–290.
  • Milborrow, B. V. (2001). The pathway of biosynthesis of abscisic acid in vascular plants: A review of the present state of knowledge of ABA biosynthesis. Journal of Experimental Botany, 52(359), 1145–1164.
  • Mirkovic, T., Ostroumov, E. E., Anna, J. M., Van Grondelle, R., Govindjee, & Scholes, G. D. (2017). Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chemical Reviews, 117, 249–293.
  • Nascimento, E. M. M., Rodrigues, F. F. G., Costa, W. D., Boligon, A. A., Sousa, E. O., Rodrigues, F. F. G., … da Costa, J. G. M. (2018). HPLC and in vitro evaluation of antioxidant properties of fruit from Malpighia glabra (Malpighiaceae) at different stages of maturation. Food and Chemical Toxicology, accepted manuscript. doi:10.1016/j.fct.2017.11.042
  • Naumann, H. D., Hagerman, A. E., Lambert, B. D., Muir, J. P., Tedeschi, L. O., & Kothmann, M. M. (2014). Molecular weight and protein-precipitating ability of condensed tannins from warm-season perennial legumes. Journal of Plant Interactions, 9, 212–219.
  • Nunes, R. S., Kahl, V. F. S., Sarmento, M. S., Richter, M. F., Costa-Latufo, L. V., Rodrigues, F. A. R., … da Silva, J. (2011). Antigenotoxicity and antioxidant activity of acerola fruit (Malpighia glabra L.) at two stages of ripeness. Plant Foods for Human Nutrition, 66, 129–135.
  • Oyeleye, S. I., Adebayo, A. A., Ogunsuyi, O. B., Dada, F. A., & Oboh, G. (2017). Phenolic profile and enzyme inhibitory activities of almond (Terminalia catappa) leaf and stem bark. International Journal of Food Properties, 20, S2810–S2821.
  • Pilati, S., Bagagli, G., Sonego, P., Moretto, M., Brazzale, D., Castorina, G., … Mozer, C. (2017). Abscisic acid is a major regulator of grape berry ripening onset: New insight with ABA signaling network. Frontiers in Plant Science, 8, 1–16.
  • Raghavendra, M., Reddy, A. M., Yadav, P. R., Raju, A. S., & Kumar, L. S. (2013). Comparative studies on the in vitro antioxidant properties of methanolic leafy extracts from six edible leafy vegetables of India. Asian Journal of Pharmaceutical and Clinical Research, 6, 96–99.
  • Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology & Medicine, 26, 1231–1237.
  • Rufino, M. S. M., Alves, R. E., De Brito, E. S., Perez, J. J., Suara, C. F., & Mancini, F. J. (2010). Bioactive compounds and antioxidant capacities of 18 non-traditional tropical fruits from Brasil. Food Chemistry, 121, 996–1002.
  • Santos-Buelga, C., & Scalbert, A. (2000). Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health. Journal of the Science of Food and Agriculture, 80, 1094–1117.
  • Sevgi, K., Tepe, B., & Sarikurkcu, C. (2015). Antioxidant and DNA damage protection potentials of selected phenolic acids. Food and Chemical Toxicology, 77, 12–21.
  • Singleton, V. L., & Rossi, J. A. (1995). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–158.
  • Smiljkovic, M., Stanisavljevic, D., Stojkovic, D., Petrovic, I., Marjanovic, J. V., Popovic, J., … Sokovic, M. (2017). Apigenin-7-O-glucoside versus apigenin: Insight into the modes of anticandidal and cytotoxic actions. EXCLI Journal, 16, 795–807.
  • Thompson, K. A., Marshall, M. R., Sims, C. A., Wei, C. I., Sargent, S. A., & Scott, J. W. (2000). Cultivar, maturity, and heat treatment on lycopene content in tomatoes. Journal of Food Science, 65(5), 791–795.
  • Vega-Aviña, R., Aguilar-Hernández, H., Gutiérrez-García, J. A., & Hernández-Vizcarra, J. A. (2000). Endemismo regional presente en la flora del municipio de Culiacán, Sinaloa, México. Acta Botánica Mexicana, 53, 1–15.
  • Vendramini, A. L., & Trugo, L. C. (2000). Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chemistry, 71, 195–198.
  • Vendramini, A. L. A., & Trugo, L. C. (2004). Phenolic compounds in acerola fruit (Malpighia punicifolia, L.). Journal of the Brazilian Chemical Society, 15, 664–668.
  • Venugopal, T. M., Mallikarjun, N., Somasundar, K., Nagaraj, K., & Prabhuswamy, B. (2016). Antioxidant and antibacterial activity of methanol extract of Malpighia glabra against Viridans group of Streptococci involved in dental caries. Advances in Bioresearch, 7, 173–180.
  • Viveros-Valdez, E., Rivas-Morales, C., Carranza-Rosales, P., Mendoza, S., & Schmeda-Hirschmann, G. (2008). Free radical scavengers from the Mexican herbal tea “Poleo” (Hedeoma drummondii). Zeitschrift für Naturforschung, 63, 341–346.
  • Yamagata, K. (2017). Carotenoids regulate endothelial functions and reduce the risk of cardiovascular disease. In D. J. Cvetkovic & G. S. Nikolic (Eds.), Carotenoids (pp. 106–121). Leskovac: InTech.
  • Zang, Y., Zhang, L., Igarashi, K., & Yu, C. (2015). The anti-obesity and anti-diabetic effects of kaempferol glycosides from unripe soybean leaves in high-fat-diet mice. Food and Function, 6, 834–841.
  • Zarin, M. A., Wan, H. Y., Isha, A., & Armania, N. (2016). Antioxidant, antimicrobial and cytotoxic potential of condensed tannins from Leucaena leucocephala hybrid-Rendang. Food Science and Human Wellness, 5, 65–75.