2,872
Views
3
CrossRef citations to date
0
Altmetric
Articles

Effect of processing conditions on the physiochemical properties and nutrients retention of spray-dried microcapsules using mixed protein system

Efecto de las condiciones de procesamiento en las propiedades fisicoquímicas y la retención de nutrientes de microcápsulas secadas por aspersión usando un sistema de proteínas mixtas

, , , &
Pages 25-35 | Received 16 May 2018, Accepted 27 Aug 2018, Published online: 15 Mar 2019

References

  • Aberkane, L., Roudaut, G., & Saurel, R. (2014). Encapsulation and oxidative stability of PUFA-Rich oil microencapsulated by spray drying using pea protein and pectin. Food and Bioprocess Technology, 7(5), 1505–1517.
  • Aghbashlo, M., Mobli, H., Madadlou, A., & Rafiee, S. (2013). Influence of wall material and inlet drying air temperature on the microencapsulation of fish oil by spray drying. Food and Bioprocess Technology, 6(6), 1561–1569.
  • Arya, S., & Thakur, B. (1990). Effect of water activity on vitamin A degradation in wheat flour (Atta). Journal of Food Processing and Preservation, 14(2), 123–134.
  • Augustin, M. A., Sanguansri, L., & Bode, O. (2006). Maillard reaction products as encapsulants for fish oil powders. Journal of Food Science, 71(2). doi:10.1111/j.1365-2621.2006.tb08893.x
  • Bajaj, P. R., Bhunia, K., Kleiner, L., Joyner, H. S., Smith, D., Ganjyal, G., & Sablani, S. S. (2017). Improving functional properties of pea protein isolate for microencapsulation of flaxseed oil. Journal of Microencapsulation, 34(2), 218–230.
  • Bajaj, P. R., Tang, J., & Sablani, S. S. (2015). Pea protein isolates: Novel wall materials for microencapsulating flaxseed oil. Food and Bioprocess Technology, 8(12), 2418–2428.
  • Bakry, A. M., Abbas, S., Ali, B., Majeed, H., Abouelwafa, M. Y., Mousa, A., & Liang, L. (2016). Microencapsulation of oils: A comprehensive review of benefits, techniques, and applications. Comprehensive Reviews in Food Science and Food Safety, 15(1), 143–182.
  • Botrel, D. A., de Barros Fernandes, R. V., Borges, S. V., & Yoshida, M. I. (2014). Influence of wall matrix systems on the properties of spray-dried microparticles containing fish oil. Food Research International, 62, 344–352.
  • Cano-Ruiz, M., & Richter, R. (1997). Effect of homogenization pressure on the milk fat globule membrane proteins. Journal of Dairy Science, 80(11), 2732–2739.
  • Feng, Y., & Lee, Y. (2016). Surface modification of zein colloidal particles with sodium caseinate to stabilize oil-in-water pickering emulsion. Food Hydrocolloids, 56, 292–302.
  • Feng, Y., & Lee, Y. (2017). Microfluidic fabrication of hollow protein microcapsules for rate-controlled release. RSC Advances, 7(78), 49455–49462.
  • Fernandez-Avila, C., & Trujillo, A. (2016). Ultra-high pressure homogenization improves oxidative stability and interfacial properties of soy protein isolate-stabilized emulsions. Food Chemistry, 209, 104–113.
  • Floury, J., Desrumaux, A., & Legrand, J. (2002). Effect of ultra‐high‐pressure homogenization on structure and on rheological properties of soy protein‐stabilized emulsions. Journal of Food Science, 67(9), 3388–3395.
  • Franco, J. M., Partal, P., Ruiz-M Rquez, D., Conde, B., & Gallegos, C. (2000). Influence of pH and protein thermal treatment on the rheology of pea protein-stabilized oil-in-water emulsions. Journal of the American Oil Chemists’ Society, 77(9), 975–984.
  • Hebishy, E., Buffa, M., Guamis, B., Blasco-Moreno, A., & Trujillo, A.-J. (2015). Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innovative Food Science & Emerging Technologies, 32, 79–90.
  • Hebishy, E., Buffa, M., Juan, B., Blasco-Moreno, A., & Trujillo, A.-J. (2017). Ultra high-pressure homogenized emulsions stabilized by sodium caseinate: Effects of protein concentration and pressure on emulsions structure and stability. LWT-Food Science and Technology, 76, 57–66.
  • Hebishy, E., Zamora, A., Buffa, M., Blasco-Moreno, A., & Trujillo, A.-J. (2017). Characterization of whey protein oil-in-water emulsions with different oil concentrations stabilized by ultra-high pressure homogenization. Processes, 5(1), 6.
  • Huang, H., Hao, S., Li, L., Yang, X., Cen, J., Lin, W., & Wei, Y. (2014). Influence of emulsion composition and spray-drying conditions on microencapsulation of tilapia oil. Journal of Food Science and Technology, 51(9), 2148–2154.
  • Ixtaina, V. Y., Julio, L. M., Wagner, J. R., Nolasco, S. M., & Tomás, M. C. (2015). Physicochemical characterization and stability of chia oil microencapsulated with sodium caseinate and lactose by spray-drying. Powder Technology, 271, 26–34.
  • Kim, H., Decker, E., & McClements, D. (2002). Impact of protein surface denaturation on droplet flocculation in hexadecane oil-in-water emulsions stabilized by β-lactoglobulin. Journal of Agricultural and Food Chemistry, 50(24), 7131–7137.
  • Koga, C. C., Andrade, J. E., Ferruzzi, M. G., & Lee, Y. (2016). Stability of trans‐resveratrol encapsulated in a protein matrix produced using spray drying to UV light stress and simulated gastro‐intestinal digestion. Journal of Food Science, 81(2). doi:10.1111/1750-3841.13176
  • Kuo, W. Y., & Lee, Y. (2017). Correlating structural properties to sodium release of model solid lipoproteic colloids. Journal of Food Engineering, 203, 16–24.
  • Let, M. B., Jacobsen, C., Sørensen, A.-D. M., & Meyer, A. S. (2007). Homogenization conditions affect the oxidative stability of fish oil enriched milk emulsions: Lipid oxidation. Journal of Agricultural and Food Chemistry, 55(5), 1773–1780.
  • Liu, M. (2010). Understanding the mechanical strength of microcapsules and their adhesion on fabric surfaces (Doctoral dissertation). University of Birmingham, Birmingham, UK. Retrieved from http://etheses.bham.ac.uk/673/
  • Lukasiewicz, S. J. (1989). Spray-drying ceramic powders. Journal of the American Ceramic Society, 72(4), 617–624.
  • Mahdi Jafari, S., He, Y., & Bhandari, B. (2006). Nano-emulsion production by sonication and microfluidization – A comparison. International Journal of Food Properties, 9(3), 475–485.
  • Mao, L., Xu, D., Yang, J., Yuan, F., Gao, Y., & Zhao, J. (2009). Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technology and Biotechnology, 47(3), 336–342.
  • Mukherjee, D., Chang, S. K., Zhang, Y., & Mukherjee, S. (2017). Effects of ultra-high pressure homogenization and hydrocolloids on physicochemical and storage properties of soymilk. Journal of Food Science, 82(10), 2313–2320.
  • Nijdam, J., & Langrish, T. (2006). The effect of surface composition on the functional properties of milk powders. Journal of Food Engineering, 77(4), 919–925.
  • Ogrodowska, D., Tańska, M., & Brandt, W. (2017). The influence of drying process conditions on the physical properties, bioactive compounds and stability of encapsulated pumpkin seed oil. Food and Bioprocess Technology, 10(7), 1265–1280.
  • Olenskyj, A., Feng, Y., & Lee, Y. (2017). Continuous microfluidic production of zein nanoparticles and correlation of particle size with physical parameters determined using CFD simulation. Journal of Food Engineering, 211, 50–59.
  • Park, C. W., & Drake, M. (2017). The effect of homogenization pressure on the flavor and flavor stability of whole milk powder. Journal of Dairy Science, 100(7), 5195–5205.
  • Qv, X. Y., Zeng, Z. P., & Jiang, J. G. (2011). Preparation of lutein microencapsulation by complex coacervation method and its physicochemical properties and stability. Food Hydrocolloids, 25(6), 1596–1603.
  • Raikos, V. (2010). Effect of heat treatment on milk protein functionality at emulsion interfaces. A review. Food Hydrocolloids, 24(4), 259–265.
  • Rognlien, M., Duncan, S., O’keefe, S., & Eigel, W. (2012). Consumer perception and sensory effect of oxidation in savory-flavored yogurt enriched with n-3 lipids. Journal of Dairy Science, 95(4), 1690–1698.
  • Sánchez-Paz, V., Pastoriza-Gallego, M. J., Losada-Barreiro, S., Bravo-Díaz, C., Gunaseelan, K., & Romsted, L. S. (2008). Quantitative determination of α-tocopherol distribution in a tributyrin/Brij 30/water model food emulsion. Journal of Colloid and Interface Science, 320(1), 1–8.
  • Santhalakshmy, S., Bosco, S. J. D., Francis, S., & Sabeena, M. (2015). Effect of inlet temperature on physicochemical properties of spray-dried jamun fruit juice powder. Powder Technology, 274, 37–43.
  • Sauvant, P., Cansell, M., Sassi, A. H., & Atgié, C. (2012). Vitamin A enrichment: Caution with encapsulation strategies used for food applications. Food Research International, 46(2), 469–479.
  • Shamaei, S., Seiiedlou, S. S., Aghbashlo, M., Tsotsas, E., & Kharaghani, A. (2017). Microencapsulation of walnut oil by spray drying: Effects of wall material and drying conditions on physicochemical properties of microcapsules. Innovative Food Science & Emerging Technologies, 39, 101–112.
  • Sharma, A., Jana, A. H., & Chavan, R. S. (2012). Functionality of milk powders and milk‐based powders for end use applications—A review. Comprehensive Reviews in Food Science and Food Safety, 11(5), 518–528.
  • Silva, E. K., Azevedo, V. M., Cunha, R. L., Hubinger, M. D., & Meireles, M. A. A. (2016). Ultrasound-assisted encapsulation of annatto seed oil: Whey protein isolate versus modified starch. Food Hydrocolloids, 56, 71–83.
  • Tan, C. P., & Nakajima, M. (2005). β-Carotene nanodispersions: Preparation, characterization and stability evaluation. Food Chemistry, 92(4), 661–671.
  • Tang, C. H., & Li, X. R. (2013). Microencapsulation properties of soy protein isolate and storage stability of the correspondingly spray-dried emulsions. Food Research International, 52(1), 419–428.
  • Tcholakova, S., Denkov, N., & Lips, A. (2008). Comparison of solid particles, globular proteins and surfactants as emulsifiers. Physical Chemistry Chemical Physics, 10(12), 1608–1627.
  • Tolve, R., Condelli, N., Can, A., & Tchuenbou-Magaia, F. L. (2018). Development and characterization of phytosterol-enriched oil microcapsules for foodstuff application. Food and Bioprocess Technology, 11(1), 152–163.
  • Usha, R., & Pothakamury, U. (1995). Fundamental aspects of controlled release in foods. Trends in. Food Sciences and Technological, 6(12), 397–406.
  • Vignolles, M. L., Jeantet, R., Lopez, C., & Schuck, P. (2007). Free fat, surface fat and dairy powders: Interactions between process and product. A review. Le Lait, 87(3), 187–236.
  • Wang, B., Duke, S. R., & Wang, Y. (2017). Microencapsulation of lipid materials by spray drying and properties of products. Journal of Food Process Engineering, 40(3). doi:10.1111/jfpe.12477
  • Xu, J., Mukherjee, D., & Chang, S. K. (2018). Physicochemical properties and storage stability of soybean protein nanoemulsions prepared by ultra-high pressure homogenization. Food Chemistry, 240, 1005–1013.
  • Yu, C., Wang, W., Yao, H., & Liu, H. (2007). Preparation of phospholipid microcapsule by spray drying. Drying Technology, 25(4), 695–702.
  • Yuan, Y., Gao, Y., Zhao, J., & Mao, L. (2008). Characterization and stability evaluation of β-carotene nanoemulsions prepared by high pressure homogenization under various emulsifying conditions. Food Research International, 41(1), 61–68.
  • Zhang, B., & Wang, Q. (2012). Development of highly ordered nanofillers in zein nanocomposites for improved tensile and barrier properties. Journal of Agricultural and Food Chemistry, 60(16), 4162–4169.