4,392
Views
28
CrossRef citations to date
0
Altmetric
Articles

Potential anti-inflammatory and lipase inhibitory peptides generated by in vitro gastrointestinal hydrolysis of heat treated millet grains

Posibles péptidos antiinflamatorios e inhibidores de la lipasa generados por hidrólisis gastrointestinal in vitro de granos de mijo tratados térmicamente

, , , &
Pages 324-333 | Received 03 Oct 2018, Accepted 01 Feb 2019, Published online: 07 Jun 2019

References

  • Adler-Nissen, J. (2002). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27, 1256–1262.
  • Amadou, I., Gounga, M. E., & Le, G. W. (2013). Millets: Nutritional composition, some health benefits and processing – A review. Emirates Journal of Food and Agriculture, 25(7), 501–508.
  • Becker, A., Boulaaba, A., Pingen, S., Krischek, C., & Klein, G. (2016). Low temperature cooking of pork meat — Physicochemical and sensory aspects. Meat Science, 118, 82–88.
  • Bora, P., Ragaee, S., & Marcone, M. (2019). Effect of parboiling on decortication yield of millet grains and phenolic acids and in vitro digestibility of selected millet products. Food Chemistry, 274, 718–725.
  • Burris, R. L., Ng, H. P., & Nagarajan, S. (2014). Soy protein inhibits inflammation-induced VCAM-1 and inflammatory cytokine induction by inhibiting the NF-κB and AKT signaling pathway in apolipoprotein E-deficient mice. European Journal of Nutrition, 53(1), 135–148.
  • Charlier, C., & Michaux, C. (2003). Dual inhibition of cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) as a new strategy to provide safer non-steroidal anti-inflammatory drugs. European Journal of Medicinal Chemistry, 38(7–8), 645–659.
  • Chung, J. H., Kong, J. N., Choi, H. E., & Kong, K. H. (2018). Antioxidant, anti-inflammatory, and anti-allergic activities of the sweet-tasting protein brazzein. Food Chemistry, 267, 163–169.
  • Clausen, M. P., Christensen, M., Hveisel, T., Duelund, L., & Mouritsen, O. G. (2018). The quest for umami: Can sous vide contribute? International Journal of Gastronomy and Food Science, 13, 129–133.
  • Co, F., Bri, A., Mestres, C., Alter, P., Durand, N., & Bohuon, P. (2018). Multi-response modeling of reaction-diffusion to explain alpha-galactosidase behavior during the soaking-cooking process in cowpea. Food Chemistry, 242, 279–287.
  • Conforti, F., & Menichini, F. (2011). Foods of plant origin as source of nitric oxide production inhibitors. Handbook of nutritional biochemistry: genomics, metabolomics, and food supply. Nova Science Publishers, Inc.
  • Cuniberti, B., Odore, R., Barbero, R., Cagnardi, P., Badino, P., Girardi, C., & Re, G. (2012). In vitro and ex vivo pharmacodynamics of selected non-steroidal anti-inflammatory drugs in equine whole blood. Veterinary Journal, 191, 327–333.
  • Czolpinska, M., & Rurek, M. (2018). Plant glycine-rich proteins in stress response: An emerging, still prospective story. Frontiers in Plant Science, 9, 1–13.
  • de la Garza, A. L., Milagro, F. I., Boque, N., Campión, J., & Martínez, J. A. (2011). Natural inhibitors of pancreatic lipase as new players in obesity treatment. Planta Medica, 77(8), 773–785.
  • Durak, A., Baraniak, B., Jakubczyk, A., & Świeca, M. (2013). Biologically active peptides obtained by enzymatic hydrolysis of Adzuki bean seeds. Food Chemistry, 141(3), 2177–2183.
  • El, M. T., El-Sharief, M. A. M. S., Zarie, E. S., Morsy, N. M., Elsheakh, A. R., Voronkov, A., … Hassan, G. S. (2018). Design, synthesis, anti-inflammatory activity and molecular docking of potential novel antipyrine and pyrazolone analogs as cyclooxygenase enzyme (COX) inhibitors. Bioorganic & Medicinal Chemistry Letters, 28(5), 952–957.
  • Gonzalez, R. R., Fong, T., Belmar, N., Saban, M., Felsen, D., & Te, A. (2005). Modulating bladder neuro-inflammation: RDP58, a novel anti-inflammatory peptide, decreases inflammation and nerve growth factor production in experimental cystitis. Journal of Urology, 173(2), 630–634.
  • González-Montoya, M., Hernández-Ledesma, B., Silván, J. M., Mora-Escobedo, R., & Martínez-Villaluenga, C. (2018). Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry, 242, 75–82.
  • Gonzalez-Rey, E., Anderson, P., & Delgado, M. (2007). Emerging roles of vasoactive intestinal peptide: A new approach for autoimmune therapy. Annals of the Rheumatic Diseases, 66, 70–76.
  • Gulati, P., Li, A., Holding, D., Santra, D., Zhang, Y., & Rose, D. (2017). Heating reduces proso millet protein digestibility via formation of hydrophobic aggregates. Journal Of Agricultural and Food Chemistry, 65, 1952–1959. doi: 10.1021/acs.jafc.6b05574.
  • Gulati, P., Sabillón, L., & Rose, D. J. (2018). Effects of processing method and solute interactions on pepsin digestibility of cooked proso millet flour. Food Research International, 109, 583–588.
  • Gunderson, C. C., Ding, K., Dvorak, J., Moore, K. N., McMeekin, D. S., & Benbrook, D. M. (2016). The pro-inflammatory effect of obesity on high grade serous ovarian cancer. Gynecologic Oncology, 143(1), 40–45.
  • Gupta, N., Srivastava, A. K., & Pandey, V. N. (2012). Biodiversity and nutraceutical quality of some Indian millets. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 82(2), 265–273.
  • Gupta, S., Sharma, A. K., Shastri, V., Madhu, M. K., & Sharma, V. K. (2017). Prediction of anti-inflammatory proteins/peptides: An insilico approach. Journal of Translational Medicine, 15, 1–11.
  • Hansen, F. K., Khankischpur, M., Tolaymat, I., Mesaros, R., Dannhardt, G., & Geffken, D. (2012). Efficient synthesis and 5-LOX/COX-inhibitory activity of some 3-hydroxybenzo-β-thiophene-2-carboxylic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 22(15), 5031–5034.
  • Hasegawa, S., Ichiyama, T., Sonaka, I., Ohsaki, A., Okada, S., Wakiguchi, H., … Furukawa, S. (2012). Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clinical and Experimental Immunology, 167(2), 269–274.
  • Jakubczyk, A., Karaś, M., Złotek, U., & Szymanowska, U. (2017). Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food Research International, 100, 489–496.
  • Janus, A., Szahidewicz-Krupska, E., Mazur, G., & Doroszko, A. (2016). Insulin resistance and endothelial dysfunction constitute a common therapeutic target in cardiometabolic disorders. Mediators of Inflammation, 2016, 10. Article ID 3634948
  • Jawed, A., Singh, G., Kohli, S., Sumera, A., Haque, S., Prasad, R., & Paul, D. (2018). Therapeutic role of lipases and lipase inhibitors derived from natural resources for remedies against metabolic disorders and lifestyle diseases. South African Journal of Botany, 120, 25–32.
  • Kamara, M. T., Ming, Z. H., & Kexue, Z. (2009). Extraction, characterization and nutritional properties of two varieties of defatted foxtail millet flour (Setaria italica L.) grown in China. Asian Journal of Biochemistry,4, 88–98. doi:10.3923/ajb.2009.88.98
  • Karaś, M., Baraniak, B., Rybczyńska, K., Gmiński, J., Gaweł-Bęben, K., & Jakubczyk, A. (2015). The influence of heat treatment of chickpea seeds on antioxidant and fibroblast growth-stimulating activity of peptide fractions obtained from proteins digested under simulated gastrointestinal conditions. International Journal of Food Science and Technology, 50(9), 2097–2103.
  • Karaś, M., Jakubczyk, A., Szymanowska, U., Złotek, U., & Zielińska, E. (2017). Digestion and bioavailability of bioactive phytochemicals. International Journal of Food Science and Technology, 52(2), 291–305.
  • Kim, M. Y., Jang, G. Y., Lee, Y. J., Woo, K. S., Hwang, B. Y., Lee, J., & Jeong, H. S. (2018). Identification of anti-inflammatory active peptide from black soybean treated by high hydrostatic pressure after germination. Phytochemistry Letters, 27, 167–173.
  • Kmiecik, W., Lisiewska, Z., Słupski, J., & Gȩbczyński, P. (2008). Effect of preliminary and culinary processing on amino acid content and protein quality in frozen French beans. International Journal of Food Science and Technology, 43(10), 1786–1791.
  • Korhonen, H., & Pihlanto, A. (2006). Bioactive peptides: Production and functionality. International Dairy Journal, 16, 945–960.
  • Maestri, E., Pavlicevic, M., Montorsi, M., & Marmiroli, N. (2018). Meta-analysis for correlating structure of bioactive peptides in foods of animal origin with regard to effect and stability. Comprehensive Reviews in Food Science and Food Safety, 18, 3–30.
  • Margier, M., Georgé, S., Hafnaoui, N., Remond, D., Nowicki, M., Du Chaffaut, L., … Reboul, E. (2018). Nutritional composition and bioactive content of legumes: Characterization of pulses frequently consumed in France and effect of the cooking method. Nutrients, 10(11), 1–12.
  • Martinez-Villaluenga, C., Rupasinghe, S. G., Schuler, M. A., & De, E. G. (2010). Peptides from purified soybean β-conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. Food Chemistry, 277, 1481–1493.
  • Medici, L. O., Gonçalves, F. V., Da Fonseca, M. P. S., Gaziola, S. A., Schmidt, D., Azevedo, R. A., & Pimentel, C. (2018). Growth, yield and grain nutritional quality in three Brazilian pearl millets (Pennisetum americanum L.) with African or Indian origins. Anais Da Academia Brasileira de Ciencias, 90(2), 1749–1758.
  • Mittendorfer, B. (2013). Origins of metabolic complications in obesity: Adipose tissue and free fatty acid trafficking. Current Opinion in Clinical Nutrition and Metabolic Care, 14(6), 535–541.
  • Montoya-Rodríguez, A., & de Mejía, E. G. (2015). Pure peptides from amaranth (Amaranthus hypochondriacus) proteins inhibit LOX-1 receptor and cellular markers associated with atherosclerosis development in vitro. Food Research International, 77, 204–214.
  • Nosworthy, M. G., Medina, G., Franczyk, A. J., Neufeld, J., Appah, P., Utioh, A., … House, J. D. (2018). Effect of processing on the in vitro and in vivo protein quality of beans (Phaseolus vulgaris and Vicia Faba). Nutrients, 10(6), 1–13.
  • Nour, A. A. M., Ahmed, I. A. M., Babiker, E. E., & Ibrahim, M. A. E. M. (2015). Effect of supplementation and cooking on in vitro protein digestibility and anti-nutrients of pearl millet flour. American Journal of Food Science and Health, 1(3), 69–75.
  • Pan, A., Zeng, H., Bi, G., Claude, F., & Feng, B. (2016). Heat-pretreatment and enzymolysis behavior of the lotus seed protein. Food Chemistry, 201, 230–236.
  • Qi, X., Cheng, L., Li, X., Zhang, D., Wu, G., Zhang, H., … Wang, Y. (2019). Effect of cooking methods on solubility and nutrition quality of brown rice powder. Food Chemistry, 274, 444–451.
  • Ribeiro, D., Freitas, M., Tomé, S. M., Silva, A. M. S., Porto, G., Cabrita, E. J., … Fernandes, E. (2014). Inhibition of LOX by flavonoids: A structure-activity relationship study. European Journal of Medicinal Chemistry, 72, 137–145.
  • Rombouts, I., Lagrain, B., Scherf, K. A., Koehler, P., & Delcour, J. A. (2015). Formation and reshuffling of disulfide bonds in bovine serum albumin demonstrated using tandem mass spectrometry with collision-induced and electron-transfer dissociation. Scientific Reports, 5, 1–12.
  • Rotondo, S., Dell, G., Manarini, S., Cerletti, C., & Evangelista, V. (2006). The lipoxygenase – Cyclooxygenase inhibitor licofelone prevents thromboxane A2-mediated cardiovascular derangement triggered by the inflammatory peptide fMLP in the rabbit. European Journal of Pharmacology, 546, 95–101.
  • Schneider, C., Pratt, D. A., Porter, N. A., & Brash, A. R. (2009). Control of oxygenation in lipoxygenase and cyclooxygenase catalysis. Chemistry & Biology, 14(5), 473–488.
  • Schulte, H., von Eckardstein, A., Cullen, P., & Assmann, G. (2001). Obesity and cardiovascular risk. Herz, 26(3), 170–177.
  • Silva-Sánchez, C., de la Rosa, A. P. B., León-Galván, M. F., de Lumen, B. O., de León-Rodríguez, A., & de Mejía, E. G. (2008). Bioactive peptides in amaranth seed. Journal of Agricultural and Food Chemistry, 56(4), 1233–1240.
  • Szymanowska, U., Jakubczyk, A., Baraniak, B., & Kur, A. (2009). Characterisation of lipoxygenase from pea seeds (Pisum sativum var. Telephone L.). Food Chemistry, 116(4), 906–910.
  • Toita, R., Kawano, T., Murata, M., & Kang, J. (2016). Biomaterials anti-obesity and anti-inflammatory effects of macrophage-targeted interleukin-10-conjugated liposomes in obese mice. Biomaterials, 110. 81–88. doi: 10.1016/j.biomaterials.2016.09.018
  • Wada, Y., & Lönnerdal, B. (2014). Bioactive peptides derived from human milk proteins – Mechanisms of action. Journal of Nutritional Biochemistry, 25(5), 503–514.
  • Weiner, H. L., Lemere, C. A., Maron, R., Spooner, E. T., Grenfell, T. J., Mori, C., & Issazadeh, S. (2000). Nasal Administration of amyloid-β peptide decreases cerebral amyloid burden in a mouse model of Alzheimer’s Disease. Annals of Neurology, 48, 567–579.
  • Werz, O., & Steinhilber, D. (2005). Development of 5-lipoxygenase inhibitors – Lessons from cellular enzyme regulation. Biochemical Pharmacology, 70(3), 327–333.
  • Wheeler, M. D., Ikejema, K., Enomoto, N., Stacklewitz, R. F., Seabra, V., Zhong, Z., … Thurman, R. G. (1999). Glycine: A new anti-inflammatory immunonutrient. Cellular and Molecular Life Sciences, 56(9–10), 843–856.
  • White, J. A., Fry, J. C., & Hart, R. J. (1986). An evaluation of the Waters Pico Tag System for the amino acid analysis of food materials. Journal of Automatic Chemistry, 8(4), 170–177.