4,485
Views
26
CrossRef citations to date
0
Altmetric
Articles

Bactericidal efficacy of UV activated TiO2 nanoparticles against Gram-positive and Gram-negative bacteria on suspension

Eficacia bactericida de nanopartículas de TiO2 activadas por luz UV contra bacterias Gram-positivas y Gram-negativas en suspensión

ORCID Icon, , & ORCID Icon
Pages 408-418 | Received 30 Oct 2018, Accepted 27 Feb 2019, Published online: 27 Jun 2019

References

  • Adhikari, B. R., Thind, S. S., Chen, S., Schraft, H., & Chen, A. (2018). Efficient bacterial disinfection based on an integrated nanoporous titanium dioxide and ruthenium oxide bifunctional approach. Journal of Hazardous Materials, 356(May), 73–81.
  • Alhaji, M. H., Sanaullah, K., Khan, A., Hamza, A., Muhammad, A., Ishola, M. S., … Bhawani, S. A. (2017). Recent developments in immobilizing titanium dioxide on supports for degradation of organic pollutants in wastewater – A review. International Journal of Environmental Science and Technology, 14(9), 2039–2052.
  • Aranda, A., Sequedo, L., Tolosa, L., Quintas, G., Burello, E., Castell, J. V., & Gombau, L. (2013). Dichloro-dihydro-fluorescein diacetate (DCFH-DA) assay: A quantitative method for oxidative stress assessment of nanoparticle-treated cells. Toxicology in Vitro, 27(2), 954–963.
  • Backhaus, K., Marugán, J., Van Grieken, R., & Sordo, C. (2010). Photocatalytic inactivation of E. faecalis in secondary wastewater plant effluents. Water Science and Technology, 61(9), 2355–2361.
  • Banerjee, J., Muraleedharan, P., Tyagi, A. K., & Raj, B. (2006). Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Current Science, 90(10), 1378–1383.
  • Barthomeuf, M., Raymond, P., Policarpo, N., Castel, X., Le Gendre, L., Denis, M., & Pissavin, C. (2017). Bactericidal efficiency of UVA-active titanium dioxide thin layers on bacteria from food industry environments. Materials Technology, 32(13), 782–791.
  • Bondarenko, O., Juganson, K., Ivask, A., Kasemets, K., Mortimer, M., & Kahru, A. (2013). Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Archives of Toxicology, 87(7), 1181–1200.
  • Caballero, L., Whitehead, K. A., Allen, N. S., & Verran, J. (2009). Inactivation of Escherichia coli on immobilized TiO2 using fluorescent light. Journal of Photochemistry and Photobiology A: Chemistry, 202(2–3), 92–98.
  • Carp, O., Huisman, C. L., & Reller, A. (2004). Photoinduced reactivity of titanium dioxide. Progress in Solid State Chemistry, 32(1–2), 33–177.
  • Cheng, C.-L., Sun, D.-S., Chu, W.-C., Tseng, Y.-H., Ho, H.-C., Wang, J.-B., … Chang, H.-H. (2009). The effects of the bacterial interaction with visible-light responsive titania photocatalyst on the bactericidal performance. Journal of Biomedical Science, 16, 7.
  • Dalrymple, O. K., Stefanakos, E., Trotz, M. A., & Goswami, D. Y. (2010). A review of the mechanisms and modeling of photocatalytic disinfection. Applied Catalysis B: Environmental, 98(1–2), 27–38.
  • Demidova, T. N., & Hamblin, M. R. (2005). Effect of cell-photosensitizer binding and cell density on microbial photoinactivation effect of cell-photosensitizer binding and cell density on microbial photoinactivation. Antimicrobial Agents and Chemotherapy, 49(6), 2329–2335.
  • Duffy, L. L., Osmond-McLeod, M. J., Judy, J., & King, T. (2018). Investigation into the antibacterial activity of silver, zinc oxide and copper oxide nanoparticles against poultry-relevant isolates of Salmonella and Campylobacter. Food Control, 92, 293–300.
  • FDA (Food and Drug Agency). (2015). Summary of color additives for use in the United States in foods, drugs, cosmetics, and medical devices [ Online]. https://www.fda.gov/forindustry/coloradditives/coloradditiveinventories/ucm115641.htm
  • Foster, H. A., Ditta, I. B., Varghese, S., & Steele, A. (2011). Photocatalytic disinfection using titanium dioxide: Spectrum and mechanism of antimicrobial activity. Applied Microbiology and Biotechnology, 90(6), 1847–1868.
  • Fujishima, A., Rao, T. N., & Tryk, D. A. (2000). TiO2 photocatalysts and diamond electrodes. Electrochimica Acta, 45(28), 4683–4690.
  • González-Rivas, F., Ripolles-Avila, C., Fontecha-Umaña, F., Ríos-Castillo, A. G., & Rodríguez-Jerez, J. J. (2018). Biofilms in the spotlight: Detection, quantification, and removal methods. Comprehensive Reviews in Food Science and Food Safety, 17(5), 1261–1276.
  • Griffiths, S. M., Singh, N., Jenkins, G. J. S., Williams, P. M., Orbaek, A. W., Barron, A. R., … Doak, S. H. (2011). Dextran coated ultrafine superparamagnetic iron oxide nanoparticles: Compatibility with common fluorometric and colorimetric dyes. Analytical Chemistry, 83(10), 3778–3785.
  • Hijnen, W. A. M., Beerendonk, E. F., & Medema, G. J. (2006). Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: A review. Water Research, 40(1), 3–22.
  • Horie, Y., David, D. A., Taya, M., & Tone, S. (1996). Effects of light intensity and titanium dioxide concentration on photocatalytic sterilization rates of microbial cells. Industrial and Engineering Chemistry Research, 35(11), 3920–3926.
  • Hu, Y., Song, X., Jiang, S., & Wei, C. (2015). Enhanced photocatalytic activity of Pt-doped TiO2 for NOx oxidation both under UV and visible light irradiation: A synergistic effect of lattice Pt4+ and surface PtO. Chemical Engineering Journal, 274(x), 102–112.
  • Jalvo, B., Faraldos, M., Bahamonde, A., & Rosal, R. (2017). Antimicrobial and antibiofilm efficacy of self-cleaning surfaces functionalized by TiO2 photocatalytic nanoparticles against Staphylococcus aureus and Pseudomonas putida. Journal of Hazardous Materials, 340, 160–170.
  • Joost, U, Juganson, K, Visnapuu, M, Mortimer, M, Kahru, A, Nõmmiste, E, Joost, U, Kisand, V, & Ivask, A. (2015). Photocatalytic antibacterial activity of nano-tio2 (anatase)-based thin films: effects on escherichia coli cells and fatty acids. Journal Of Photochemistry and Photobiology B, 142, 178–185.
  • Jovanović, B. (2015a). Critical review of public health regulations of titanium dioxide, a human food additive. Integrated Environmental Assessment and Management, 11(1), 10–20.
  • Jovanović, B. (2015b). Review of titanium dioxide nanoparticle phototoxicity: Developing a phototoxicity ratio to correct the endpoint values of toxicity tests. Environmental Toxicology and Chemistry, 34(5), 1070–1077.
  • Kahru, A., & Dubourguier, H. C. (2010). From ecotoxicology to nanoecotoxicology. Toxicology, 269(2–3), 105–119.
  • Kermanizadeh, A., Pojana, G., Gaiser, B. K., Birkedal, R., Bilaničová, D., Wallin, H., … Stone, V. (2013). In vitro assessment of engineered nanomaterials using a hepatocyte cell line: Cytotoxicity, pro-inflammatory cytokines and functional markers. Nanotoxicology, 7(3), 301–313.
  • Kikuchi, Y., Sunada, K., Iyoda, T., Hashimoto, K., & Fujishima, A. (1997). Photocatalytic bactericidal effect of TiO2 thin films: Dynamic view of the active oxygen species responsible for the effect. Journal of Photochemistry and Photobiology A: Chemistry, 106(1–3), 51–56.
  • Kim, B., Kim, D., Cho, D., & Cho, S. (2003). Bactericidal effect of TiO2 photocatalyst on selected food-borne pathogenic bacteria. Chemosphere, 52(1), 277–281.
  • Kim, D.-J. (2012). Relation of microbial biomass to counting units for Pseudomonas aeruginosa. African Journal of Microbiology Research, 6(21), 4620–4622.
  • Koizumi, Y., & Taya, M. (2002). Kinetic evaluation of biocidal activity of titanium dioxide against phage MS2 considering interaction between the phage and photocatalyst particles. Biochemical Engineering Journal, 12(2), 107–116.
  • Kubacka, A., Ferrer, M., & Fernández-García, M. (2012). Kinetics of photocatalytic disinfection in TiO2-containing polymer thin films: UV and visible light performances. Applied Catalysis B: Environmental, 121–122, 230–238.
  • Lalucat, J., Bennasar, A., Bosch, R., García-Valdés, E., & Palleroni, N. J. (2006). Biology of Pseudomonas stutzeri. Microbiology and Molecular Biology Reviews : MMBR, 70(2), 510–547.
  • Landmann, M., Rauls, E., & Schmidt, W. G. (2012). The electronic structure and optical response of rutile, anatase and brookite TiO2. Journal of Physics Condensed Matter, 24(19), 1–6.
  • Lee, M., Shahbaz, H. M., Kim, J. U., Lee, H., Lee, D. U., & Park, J. (2018). Efficacy of UV-TiO2 photocatalysis technology for inactivation of Escherichia coli K12 on the surface of blueberries and a model agar matrix and the influence of surface characteristics. Food Microbiology, 76(July), 526–532.
  • Li, Q., Mahendra, S., Lyon, D. Y., Brunet, L., Liga, M. V., Li, D., & Alvarez, P. J. J. (2008). Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Research, 42(18), 4591–4602.
  • Lin, Y.-T., Weng, C.-H., Hsu, H.-J., Huang, J.-W., Srivastav, A. L., & Shiesh, -C.-C. (2014). Effect of oxygen, moisture, and temperature on the photo oxidation of ethylene on N-doped TiO2 catalyst. Separation and Purification Technology, 134, 117–125.
  • Long, M., Wang, J., Zhuang, H., Zhang, Y., Wu, H., & Zhang, J. (2014). Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms – Salmonella Typhimurium and Listeria monocytogenes. Food Control, 39(1), 68–74.
  • Matsunaga, T. (1985). Sterilization with particulate photosemiconductor. Journal of Antibacterial Antifungal Agents, 13, 211–220.
  • Miyagi, T., Kamei, M., Mitsuhashi, T., Ishigaki, T., & Yamazaki, A. (2004). Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chemical Physics Letters, 390(4–6), 399–402.
  • Oka, Y., Kim, W. C., Yoshida, T., Hirashima, T., Mouri, H., Urade, H., … Kubo, T. (2008). Efficacy of titanium dioxide photocatalyst for inhibition of bacterial colonization on percutaneous implants. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 86, 530–540.
  • Özkalelí, M., & Erdem, A. (2017). Factors promoting Staphylococcus auerus disinfection by TiO2, SiO2 and AG nanoparticles. The Online Journal of Science and Technology, 7(2), 51–55.
  • Pal, A., Pehkonen, S. O., Yu, L. E., & Ray, M. B. (2007). Photocatalytic inactivation of Gram-positive and Gram-negative bacteria using fluorescent light. Journal of Photochemistry and Photobiology A: Chemistry, 186(2–3), 335–341.
  • Pham, T.-D., & Lee, B.-K. (2015). Disinfection of Staphylococcus aureus in indoor aerosols using Cu–TiO2 deposited on glass fiber under visible light irradiation. Journal of Photochemistry and Photobiology A: Chemistry, 307–308, 16–22.
  • Polo, A., Diamanti, M. V., Bjarnsholt, T., Haøiby, N., Villa, F., Pedeferri, M. P., & Cappitelli, F. (2011). Effects of photoactivated titanium dioxide nanopowders and coating on planktonic and biofilm growth of Pseudomonas aeruginosa. Photochemistry and Photobiology, 87(6), 1387–1394.
  • Qi, X., Li, H., Lam, J. W. Y., Yuan, X., Wei, J., Tang, B. Z., & Zhang, H. (2012). Graphene oxide as a novel nanoplatform for enhancement of aggregation-induced emission of silole fluorophores. Advanced Materials, 24(30), 4191–4195.
  • Rincón, A. G., & Pulgarin, C. (2003). Photocatalytical inactivation of E. coli: Effect of (continuous-intermittent) light intensity and of (suspended-fixed) TiO2 concentration. Applied Catalysis B: Environmental, 44(3), 263–284.
  • Rincón, A. G., & Pulgarin, C. (2004). Effect of pH, inorganic ions, organic matter and H2O2 on E. coli K12 photocatalytic inactivation by TiO2: Implications in solar water disinfection. Applied Catalysis B: Environmental, 51(4), 283–302.
  • Ripolles-Avila, C., Hascoët, A. S., Guerrero-Navarro, A. E., & Rodríguez-Jerez, J. J. (2018). Establishment of incubation conditions to optimize the in vitro formation of mature Listeria monocytogenes biofilms on food-control surfaces. Food Control. doi:10.1016/j.jclepro.2018.01.232
  • Ripolles-Avila, C., Ríos-Castillo, A. G., Guerrero-Navarro, A. E., & Rodríguez-Jerez, J. J. (2018). Reinterpretation of a classic method for the quantification of cell density within biofilms of Listeria monocytogenes. Journal of Microbiology & Experimentation, 6(2), 70–75.
  • Ripolles-Avila, C., Ríos-Castillo, A. G., & Rodríguez-Jerez, J. J. (2018). Development of a peroxide biodetector for a direct detection of biofilms produced by catalase-positive bacteria on food-contact surfaces. CyTA - Journal of Food, 16(1), 506–515.
  • Rizzo, L. (2009). Inactivation and injury of total coliform bacteria after primary disinfection of drinking water by TiO2 photocatalysis. Journal of Hazardous Materials, 165(1–3), 48–51.
  • Sabatini, C. A., Pereira, R. V., & Gehlen, M. H. (2007). Fluorescence modulation of acridine and coumarin dyes by silver nanoparticles. Journal of Fluorescence, 17(4), 377–382.
  • Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., … Mohamad, D. (2015). Review on Zinc oxide nanoparticles: Antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7, 219–242.
  • Sun, D. D., Tay, J. H., & Tan, K. M. (2003). Photocatalytic degradation of E. coliform in water. Water Research, 37(14), 3452–3462.
  • Sun, L, Li, Y, Liu, X, Jin, M, Zhang, L, Du, Z, Guo, C, Huang, P, & Sun, Z. (2011). Cytotoxicity and mitochondrial damage caused by silica nanoparticles. Toxicology in Vitro, 25, 1619–1629.
  • Swetha, S., Santhosh, S. M., & Geetha Balakrishna, R. (2010). Synthesis and comparative study of nano-TiO2 over degussa P-25 in disinfection of water. Photochemistry and Photobiology, 86(3), 628–632.
  • Tsang, M. P., Hristozov, D., Zabeo, A., Koivisto, A. J., Østerskov Jensen, A. C., Alstrup Jensen, A., … Sonnemann, G. (2017). Probabilistic risk assessment of emerging materials: Case study of titanium dioxide nanoparticles. Nanotoxicology, 11(4), 558–568.
  • Tsuang, Y.-H., Sun, J.-S., Huang, Y.-C., Lu, C.-H., Chang, W. H.-S., & Wang, -C.-C. (2008). Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artificial Organs, 32(2), 167–174.
  • Wang, S., Weller, D., Falardeau, J., Strawn, L. K., Mardones, F. O., Adell, A. D., & Moreno Switt, A. I. (2016). Food safety trends: From globalization of whole genome sequencing to application of new tools to prevent foodborne diseases. Trends in Food Science and Technology, 57, 188–198.
  • WHO. (2015). Who estimates of the global burden of foodborne diseases. WHO Press.
  • Wong, M. S., Chu, W. C., Sun, D. S., Huang, H. S., Chen, J. H., Tsai, P. J., … Chang, H. H. (2006). Visible-light-induced bactericidal activity of a nitrogen-doped titanium photocatalyst against human pathogens. Applied and Environmental Microbiology, 72(9), 6111–6116.
  • Yemmireddy, V. K., & Hung, Y. C. (2017). Using photocatalyst metal oxides as antimicrobial surface coatings to ensure food safety — Opportunities and challenges. Comprehensive Reviews in Food Science and Food Safety, 16(4), 617–631.
  • Yemmireddy, V. K., & Hung, Y.-C. (2015). Selection of photocatalytic bactericidal titanium dioxide (TiO2) nanoparticles for food safety applications. LWT - Food Science and Technology, 61(1), 1–6.
  • Yu, K. P., Lee, G. W. M., Lin, S. Y., & Huang, C. P. (2008). Removal of bioaerosols by the combination of a photocatalytic filter and negative air ions. Journal of Aerosol Science, 39(5), 377–392.
  • Zhao, X., Zhao, F., Wang, J., & Zhong, N. (2017). Biofilm formation and control strategies of foodborne pathogens: Food safety perspectives. RSC Advances, 7(58), 36670–36683.