786
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Evaluation of phytonutrients composition and nutraceutical potential of tomato by-products

Evaluación de la composición de fitonutrientes y del potencial nutracéutico de subproductos del tomate

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon show all
Pages 404-411 | Received 05 Jul 2022, Accepted 12 Nov 2022, Published online: 16 Dec 2022

References

  • Ali, M. Y., Sina, A. A. I., Khandker, S. S., Neesa, L., Tanvir, E. M., Kabir, A., Khalil, M. I., & Gan, S. H. (2021). Nutritional composition and bioactive compounds in tomatoes and their impact on human health and disease: A review. Foods, 10(1), 1–32. https://doi.org/10.3390/foods10010045
  • Alzamel, N. M. (2022). Bioactive compounds in some medicinal plants from different habitats in KSA. Pakistan Journal of Medical and Health Sciences, 16(2), 1085–1091. https://doi.org/10.53350/pjmhs221621085
  • Anand, R., Mohan, L., & Bharadvaja, N. (2022). Disease prevention and treatment using β-Carotene: The ultimate provitamin A. Revista Brasileira de Farmacognosia, 15(99), 1–11. https://doi.org/10.1007/s43450-022-00262-w
  • Arvouet-Grand, A., Vennat, B., Pourrat, A., & Legret, P. (1994). Standardisation d’un extrait de propolis et identification des principaux constituants. Journal de pharmacie de Belgique, 49(6), 462–468.
  • Bednarczyk, D., Aviv-Sharon, E., Savidor, A., Levin, Y., & Charuvi, D. (2020). Influence of short-term exposure to high light on photosynthesis and proteins involved in photo-protective processes in tomato leaves. Environmental and Experimental Botany, 179(July), 104198. https://doi.org/10.1016/j.envexpbot.2020.104198
  • Borguini, R. G., Helena, D., Bastos, M., Moita-Neto, J. M., Capasso, F. S., Aparecida, E., Da, F., & Torres, S. (2013). Antioxidant potential of tomatoes cultivated in organic and conventional systems. Brazilian Archives of Biology and Technology an International Journal, 56456(4), 521–529. https://doi.org/10.1590/S1516-89132013000400001
  • Braglia, R., Costa, P., DiMarco, G., D’Agostino, A., Redi, E. L., Scuderi, F., Gismondi, A., & Canini, A. (2021). Phytochemicals and quality level of food plants grown in an aquaponics system. Journal of the Science of Food and Agriculture, 102(2), 844–850. https://doi.org/10.1002/jsfa.11420
  • Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). From functional food to medicinal product: Systematic approach in analysis of polyphenolics from propolis and wine. Lebensmittel-Wissenschaft & Technologie, 28(1), 25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
  • Bucciantini, M., Leri, M., Nardiello, P., Casamenti, F., & Stefani, M. (2021). Olive polyphenols: Antioxidant and anti-inflammatory properties. Antioxidants, 10(7), 1–23. https://doi.org/10.3390/antiox10071044
  • Cannataro, R., Fazio, A., La Torre, C., Caroleo, M. C., & Cione, E. (2021). Polyphenols in the Mediterranean diet: From dietary sources to microRNA modulation. Antioxidants, 10(2), 1–24. https://doi.org/10.3390/antiox10020328
  • Cesare, M. M., Felice, F., Conti, V., Cerri, L., Zambito, Y., Romi, M., Cai, G., Cantini, C., & DiStefano, R. (2021). Impact of peels extracts from an Italian ancient tomato variety grown under drought stress conditions on vascular related dysfunction. Molecules, 26(14), 1–14. https://doi.org/10.3390/molecules26144289
  • Cunha-Santos, E. C. E., Viganó, J., Neves, D. A., Martínez, J., & Godoy, H. T. (2018). Vitamin C in camu-camu [Myrciaria dubia (H.B.K.) McVaugh]: Evaluation of extraction and analytical methods. Food Research International, 115(April), 160–166. https://doi.org/10.1016/j.foodres.2018.08.031
  • Dabiré, C., Sérémé, A., Sanou, A., Dakéné, V. M., Guissou, W. D. B. A., Bahanla Oboulbiga, E., & Mamoudou, H. D. (2021). Impact of organic or conventional cultivation and drying method on phenolic compounds, carotenoids and vitamin C contents in tomato. World Journal of Advanced Research and Reviews, 10(1), 360–372. https://doi.org/10.30574/wjarr.2021.10.1.0141
  • Dias, M. C., Pinto, D. C. G. A., & Silva, A. M. S. (2021). Plant flavonoids: Chemical characteristics and biological activity. Molecules, 26(17), 1–16. https://doi.org/10.3390/molecules26175377
  • Doka, O., Bicanic, D. D., Dicko, M. H., & Slingerland, M. A. Photoacoustic approach to direct determination of the total phenolic content in red sorghum flours. (2004). Journal of Agricultural and Food Chemistry, 52(8), 2133–2136. (ACS, USA). doi:10.1021/jf030421a
  • Elbadrawy, E., & Sello, A. (2016). Evaluation of nutritional value and antioxidant activity of tomato peel extracts. Arabian Journal of Chemistry, 9, S1010–1018. https://doi.org/10.1016/j.arabjc.2011.11.011
  • Fernandes, I., Oliveira, J., Pinho, A., & Carvalho, E. (2022). The role of nutraceutical containing polyphenols in diabetes prevention. Metabolites, 12(2), 1–28. https://doi.org/10.3390/metabo12020184
  • Fernández, N. E. P., López, G. P., Domínguez, C. R., Izaguirre, S. C. O., & Peñuelas, V. M. L. (2021). Efecto de la adición de cáscara y semilla deshidratada en la capacidad antioxidante de una pasta de tomate producida en Sinaloa. Biotecnia, XXIII(1), 135–140. https://doi.org/10.18633/biotecnia.v23i1.1314
  • Friedman, M., Tam, C. C., Kim, J. H., Escobar, S., Gong, S., Liu, M., Mao, X. Y., Do, C., Kuang, I., Boateng, K., Ha, J., Tran, M., Alluri, S., Le, T., Leong, R., Cheng, L. W., & Land, K. M. (2021). Anti-parasitic activity of cherry tomato peel powders. Foods, 10(2), 1–15. https://doi.org/10.3390/foods10020230
  • Garg, A., & Lee, J. C. Y. (2022). Vitamin E: Where are we now in vascular diseases? Life, 12(2), 1–16. https://doi.org/10.3390/life12020310
  • Hinneburg, I., Damien, D. H. J., & Hiltunen, R. (2006). Antioxidant activities of extracts from selected culinary herbs and spices. Food Chemistry, 97(1), 122–129. https://doi.org/10.1016/j.foodchem.2005.03.028
  • Kaboré, K., Konaté, K., Sanou, A., Dakuyo, R., Sama, H., Santara, B., Wendinpuikondo, E., Compaoré, R., & Dicko, M. H. (2022). Tomato by-products, a source of nutrients for the prevention and reduction of malnutrition. Nutrients, 14(14), 2871. https://doi.org/10.3390/NU14142871
  • Khan, M. S., Ikram, M., Park, T. J., & Kim, M. O. (2021). Pathology, risk factors, and oxidative damage related to type 2 diabetes-mediated Alzheimer’s disease and the rescuing effects of the potent antioxidant anthocyanin. In Oxidative medicine and cellular longevity (Vol. 2021, pp. 1–14). https://doi.org/10.1155/2021/4051207
  • Kosmalski, M., Pękala-Wojciechowska, A., Sut, A., Pietras, T., & Luzak, B. (2022). Dietary intake of polyphenols or polyunsaturated fatty acids and its relationship with metabolic and inflammatory state in patients with type 2 Diabetes Mellitus. Nutrients, 14(5), 1–15. https://doi.org/10.3390/nu14051083
  • Lappi, J., Raninen, K., Väkeväinen, K., Kårlund, A., Törrönen, R., & Kolehmainen, M. (2021). Blackcurrant (Ribes nigrum) lowers sugar-induced postprandial glycaemia independently and in a product with fermented quinoa: A randomised crossover trial. The British Journal of Nutrition, 126(5), 708–717. https://doi.org/10.1017/S0007114520004468
  • Li, Y., Cui, Y., Lu, F., Wang, X., Liao, X., Hu, X., & Zhang, Y. (2019). Beneficial effects of a chlorophyll-rich spinach extract supplementation on prevention of obesity and modulation of gut microbiota in high-fat diet-fed mice. Journal of Functional Foods, 60(April), 103436. https://doi.org/10.1016/j.jff.2019.103436
  • Lim, W., & Li, J. (2017). Co-expression of onion chalcone isomerase in Del/Ros1-expressing tomato enhances anthocyanin and flavonol production. Plant Cell, Tissue and Organ Culture (PCTOC), 128(1), 113–124. https://doi.org/10.1007/s11240-016-1090-6
  • Madia, V. N., De Vita, D., Ialongo, D., Tudino, V., De Leo, A., Scipione, L., DiSanto, R., Costi, R., & Messore, A. (2021). Recent advances in recovery of lycopene from tomato waste: A potent antioxidant with endless benefits. Molecules, 26(15), 1–18. https://doi.org/10.3390/molecules26154495
  • Maneesai, P., Iampanichakul, M., Chaihongsa, N., Poasakate, A., Potue, P., Rattanakanokchai, S., Bunbupha, S., Chiangsaen, P., & Pakdeechote, P. (2021). Butterfly pea flower (Clitoria ternatea Linn.) extract ameliorates cardiovascular dysfunction and oxidative stress in nitric oxide-deficient hypertensive rats. Antioxidants, 10(4), 1–16. https://doi.org/10.3390/antiox10040523
  • Milani, G. P., Macchi, M., & Guz-Mark, A. (2021). Vitamin c in the treatment of covid-19. Nutrients, 13(4), 1–10. https://doi.org/10.3390/nu13041172
  • Nagata, M., & Yamashita, I. (1992). Simple Method for Simultaneous Determination of Chlorophyll and Carotenoids in Tomato Fruit. Nippon Shokuhin Kogyo Gakkaishi, 39(10), 925–928. https://doi.org/10.3136/nskkk1962.39.925
  • Navarro-González, I., García-Valverde, V., García-Alonso, J., & Periago, M. J. (2011). Chemical profile, functional and antioxidant properties of tomato peel fiber. Food Research International, 44(5), 1528–1535. https://doi.org/10.1016/j.foodres.2011.04.005
  • Qiu, Z., Wang, H., Li, D., Yu, B., Hui, Q., Yan, S., Huang, Z., Cui, X., & Cao, B. (2019). Identification of candidate HY5-dependent and -independent regulators of anthocyanin biosynthesis in tomato. Plant Cell Physiology, 60(December), 643–656. ( 2018). https://doi.org/10.1093/pcp/pcy236
  • Ranjbar Nedamani, A., Ranjbar Nedamani, E., & Salimi, A. (2019). The role of lycopene in human health as a natural colorant. Nutrition and Food Science, 49(2), 284–298. https://doi.org/10.1108/NFS-08-2018-0221
  • Rufino, A. T., Costa, V. M., Carvalho, F., & Fernandes, E. (2021). Flavonoids as antiobesity agents: A review. Medicinal Research Reviews, 41(1), 556–585. https://doi.org/10.1002/med.21740
  • Sabry, M. M., Abou El Nour, R. K. E. D., Monem, M. M. A., & Fotouh, G. I. A. (2021). The possible effect of β-carotene on nicotine withdrawal in testicular tissue of adult male albino rats. Histological and immunohistochemical study. Egyptian Journal of Histology, 44(3), 687–699. https://doi.org/10.21608/ejh.2020.38061.1342
  • Sakya, A. T., & Sulandjari. (2019). Foliar iron application on growth and yield of tomato. IOP Conference Series: Earth and Environmental Science, 250(1), 1–7. https://doi.org/10.1088/1755-1315/250/1/012001
  • Sansone, C., & Brunet, C. (2019). Promises and challenges of microalgal antioxidant production. Antioxidants, 8(199), 1–9. doi:10.3390/antiox8070199
  • Sarkar, D., Christopher, A., & Shetty, K. (2022). Phenolic bioactives from plant-based foods for glycemic control. Frontiers in Endocrinology, 12(January), 1–24. https://doi.org/10.3389/fendo.2021.727503
  • Savych, A., & Milian, I. (2021). Total flavonoid content in the herbal mixture with antidiabetic activity. Pharmacologyonline, 2, 68–75.
  • Severo, J., Dos Santos, F. N., Samborski, T., Rodrigues, R., & Mello, A. F. S. (2021). Biofortified sweet potatoes as a tool to combat vitamin a deficiency: Effect of food processing in carotenoid content. Revista Chilena de Nutricion, 48(3), 414–424. https://doi.org/10.4067/s0717-75182021000300414
  • Shirahigue, L. D., & Ceccato-Antonini, S. R. (2020). Agro-industrial wastes as sources of bioactive compounds for food and fermentation industries. Food Technology, 50(4), 1–17. https://doi.org/10.1590/0103-8478cr20190857
  • Silva, S., Costa, E. M., Calhau, C., Morais, R. M., & Pintado, M. E. (2017). Anthocyanin extraction from plant tissues: A review. Critical Reviews in Food Science and Nutrition, 57(14), 3072–3083. https://doi.org/10.1080/10408398.2015.1087963
  • Suhl, J., Dannehl, D., Kloas, W., Baganz, D., Jobs, S., Scheibe, G., & Schmidt, U. (2016). Advanced aquaponics: Evaluation of intensive tomato production in aquaponics vs. conventional hydroponics. Agricultural Water Management, 178, 335–344. https://doi.org/10.1016/j.agwat.2016.10.013
  • Torun, H., Novák, O., Mikulík, J., Strnad, M., & Ayaz, F. A. (2022). The effects of exogenous salicylic acid on endogenous phytohormone status in hordeum vulgare L. under salt stress. Plants, 11(5), 1–22. https://doi.org/10.3390/plants11050618
  • Valle-Castillo, C. E., Valdez-Morales, M., Medina-Godoy, S., Segoviano-León, J. P., García-Ulloa, M., Valverde Juárez, F. J., & Espinosa-Alonso, L. G. (2021). Physicochemical, microbiological and nutritional quality of a tomato industrial by-product and its valorization as a source of oil rich in carotenoids. Agro Productividad, 14(1), 49–54. https://doi.org/10.32854/agrop.v14i14.1757
  • Vaňková, K., Marková, I., Jašprová, J., Dvořák, A., Subhanová, I., Zelenka, J., Novosádová, I., Rasl, J., Vomastek, T., Sobotka, R., Muchová, L., & Vítek, L. (2018). Chlorophyll-mediated changes in the redox status of pancreatic cancer cells are associated with its anticancer effects. Oxidative Medicine and Cellular Longevity, 2018, 1–11. https://doi.org/10.1155/2018/4069167
  • Wu, X., Yu, L., & Pehrsson, P. R. (2022). Are processed tomato products as nutritious as fresh tomatoes? Scoping review on the effects of industrial processing on nutrients and bioactive compounds in tomatoes. Advances in Nutrition, 13(1), 138–151. https://doi.org/10.1093/advances/nmab109
  • Yamada, C., Kishimoto, N., Urata, N., Kimura, M., Toyoda, M., Masuda, Y., Takashimizu, S., Ishii, N., Kubo, A., & Nishizaki, Y. (2020). Relationship between serum antioxidative vitamin concentrations and type 2 diabetes in Japanese subjects. Journal of Nutritional Science and Vitaminology, 66(4), 289–295. https://doi.org/10.3177/jnsv.66.289
  • Yang, T., Zhu, L. S., Meng, Y., Lv, R., Zhou, Z., Zhu, L., Lin, H. H., & Xi, D. H. (2018). Alpha-momorcharin enhances Tobacco mosaic virus resistance in tobaccoNN by manipulating jasmonic acid-salicylic acid crosstalk. Journal of Plant Physiology, 223, 116–126. https://doi.org/10.1016/j.jplph.2017.04.011
  • Yuan, Y., Mei, L., Wu, M., Wei, W., Shan, W., Gong, Z., Zhang, Q., Yang, F., Yan, F., Zhang, Q., Luo, Y., Xu, X., Zhang, W., Miao, M., Lu, W., Li, Z., & Deng, W. (2018). SlARF10, an auxin response factor, is involved in chlorophyll and sugar accumulation during tomato fruit development. Journal of Experimental Botany, 69(22), 5507–5518. https://doi.org/10.1093/jxb/ery328