1,383
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Discrimination of different edible vegetable oils based on GC-IMS and SIMCA

, , &
Pages 49-56 | Received 13 Oct 2022, Accepted 16 Dec 2022, Published online: 05 Jan 2023

References

  • Alvarenga, B. R., Xavier, F. A. N., Soares, F. L. F., & Carneiro, R. L. (2018). Thermal stability assessment of vegetable oils by raman spectroscopy and chemometrics. Food Analytical Methods, 11(7), 1969–1976. https://doi.org/10.1007/s12161-018-1160-y
  • Berghian-Grosan, C., & Magdas, D. A. (2020). Raman spectroscopy and machine-learning for edible oils evaluation. Talanta, 218, 121176. https://doi.org/10.1016/j.talanta.2020.121176
  • Botosoa, E. P., Chene, C., & Karoui, R. (2021). Front face fluorescence spectroscopy combined with pls-da allows to monitor chemical changes of edible vegetable oils during storage at 60 at 60°C. European Journal of Lipid Science and Technology, 123(6). https://doi.org/10.1002/ejlt.202000088
  • Cao, J., Li, C., Liu, R., Liu, X. R., Fan, Y. W., & Deng, Z. Y. (2017). Combined application of fluorescence spectroscopy and chemometrics analysis in oxidative deterioration of edible oils. Food Analytical Methods, 10(3), 649–658. https://doi.org/10.1007/s12161-016-0587-2
  • Garrido Delgado, R., Dobao-Prieto, M. M., Arce, L., & Valcárcel, M. (2015). Determination of volatile compounds by GC-IMS to assign the quality of virgin olive oil. Food Chemistry, 187, 572–579. https://doi.org/10.1016/j.foodchem.2015.04.082
  • Gerhardt, N., Birkenmeier, M., Schwolow, S., Rohn, S., & Weller, P. (2018). Volatile-compound fingerprinting by headspace-gas-chromatography ion-mobility spectrometry (HS-GC-IMS) as a benchtop alternative to 1H NMR profiling for assessment of the authenticity of honey. Analytical Chemistry, 90(3), 1777–1785. https://doi.org/10.1021/acs.analchem.7b03748
  • Guo, S., Zhao, X., Ma, Y., Wang, Y., & Wang, D. (2022). Fingerprints and changes analysis of volatile compounds in fresh-cut yam during yellowing process by using HS-GC-IMS. Food Chemistry, 369, 130939. https://doi.org/10.1016/j.foodchem.2021.130939
  • Hong, Y., Irudayaraj, J., & Paradkar, M. M. (2005). Discriminant analysis of edible oils and fats by FTIR, FT-NIR and FT-Raman spectroscopy. Food Chemistry, 93(1), 25–32. https://doi.org/10.1016/j.foodchem.2004.08.039
  • Jiménez-Carvelo, A. M., Pérez-Castaño, E., González-Casado, A., & Cuadros Rodríguez, L. (2017). One input-class and two input-class classifications for differentiating olive oil from other edible vegetable oils by use of the normal-phase liquid chromatography fingerprint of the methyl-transesterified fraction. Food Chemistry, 221, 1784–1791. https://doi.org/10.1016/j.foodchem.2016.10.103
  • Kwofie, F., Lavine, B. K., Ottaway, J., & Booksh, K. (2020). Differentiation of edible oils by type using raman spectroscopy and pattern recognition methods. Applied Spectroscopy, 74(6), 645–654. https://doi.org/10.1177/0003702819888220
  • Li, X. R., Dong, Y. F., Jiang, P. F., Qi, L. B., & Lin, S. Y. (2022). Identification of changes in volatile compounds in sea cucumber apostichopus japonicus during seasonings soaking using HS-GC-IMS. LWT - Food Science & Technology, 154, 154. https://doi.org/10.1016/j.lwt.2021.112695
  • Lv, W. S., Lin, T., Ren, Z. Y., Jiang, Y. Q., Zhang, J., Bi, F., Gu, L. H., Hou, H. C., & He, J. (2020). Rapid discrimination of citrus reticulata ‘Chachi’ by headspace-gas chromatography-ion mobility spectrometry fingerprints combined with principal component analysis. Food Research International, 131, 108985. https://doi.org/10.1016/j.foodres.2020.108985
  • Mailer, R. J. (2004). Rapid evaluation of olive oil quality by NIR reflectance spectroscopy. Journal of the American Oil Chemists’ Society, 81(9), 823–827. https://doi.org/10.1007/s11746-004-0986-4
  • Majchrzak, T., Wojnowski, W., Dymerski, T., Gębicki, J., & Namiesnik, J. (2017). Electronic noses in classification and quality control of edible oils: A review. Food Chemistry, 246, 192–201. https://doi.org/10.1016/j.foodchem.2017.11.013
  • Ng, T. T., Li, S. Y., Ng, C. C. A., So, P. K., Wong, T. F., Li, Z. Y., Chan, S. T., & Yao, Z. P. (2018). Establishment of a spectral database for classification of edible oils using matrix-assisted laser desorption/ionization mass spectrometry. Food Chemistry, 252, 335–342. https://doi.org/10.1016/j.foodchem.2018.01.125
  • Picouet, P. A., Gou, P., Hyypiö, R., & Castellari, M. (2018). Implementation of NIR technology for at-line rapid detection of sunflower oil adulterated with mineral oil. Journal of Food Engineering, 230, 18–27. https://doi.org/10.1016/j.jfoodeng.2018.01.011
  • Satyam, S., & Shashikant, S. (2017). Data processing approaches and strategies for non-destructive fruits quality inspection and authentication: A review. Journal of Food Measurement and Characterization, 12(4), 2758–2794. https://doi.org/10.1007/s11694-018-9893-2
  • Sikorska, E., Górecki, T., Khmelinskii, I. V., Sikorski, M., & Kozioł, J. (2005). Classification of edible oils using synchronous scanning fluorescence spectroscopy. Food Chemistry, 89(2), 217–225. https://doi.org/10.1016/j.foodchem.2004.02.028
  • Smidt, E., Meissl, K., Schwanninger, M., & Lechner, P. (2008). Classification of waste materials using Fourier transform infrared spectroscopy and soft independent modeling of class analogy. Waste Management, 28(10), 1699–1710. https://doi.org/10.1016/j.wasman.2007.08.003
  • Wang, Z. L., Yuan, Y. X., Hong, B., Zhao, X., & Gu, Z. Y. (2021). Characteristic volatile fingerprints of four chrysanthemum teas determined by HS-GC-IMS. Molecules, 26(23), 7113. https://doi.org/10.3390/molecules26237113
  • Xu, J., Liu, X. F., & Wang, Y. T. (2016). A detection method of vegetable oils in edible blended oil based on three-dimensional fluorescence spectroscopy technique. Food Chemistry, 212, 72–77. https://doi.org/10.1016/j.foodchem.2016.05.158
  • Yao, W., Cai, Y., Liu, D., Chen, Y., Li, J., Zhang, M., Chen, N., & Zhang, H. (2022). Analysis of flavor formation during production of dezhou braised chicken using headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS). Food Chemistry, 370, 130989. https://doi.org/10.1016/j.foodchem.2021.130989
  • Zhan, X. R., Zhu, X. R., Shi, X. Y., Zhang, Z. Y., & Qiao, Y. J. (2009). Determination of hesperidin in tangerine leaf by near-infrared spectroscopy with SPXY algorithm for sample subset partitioning and monte carlo cross validation. Spectroscopy and Spectral Analysis, 29, 964–968. https://doi.org/10.3964/j.issn.1000-0593(2009)04-0964-05
  • Zhang, H., Hu, X. Y., Liu, L. M., Wei, J. F., & Bian, X. H. (2022). Near infrared spectroscopy combined with chemometrics for quantitative analysis of corn oil in edible blend oil. Spectrochimica acta Part A Molecular and biomolecular spectroscopy, 270, 270. https://doi.org/10.1016/j.saa.2021.120841
  • Zhang, L. X., Shuai, Q., Li, P. W., Zhang, Q., Ma, F., Zhang, W., & Ding, X. X. (2016). Ion mobility spectrometry fingerprints: A rapid detection technology for adulteration of sesame oil. Food Chemistry, 192, 60–66. https://doi.org/10.1016/j.foodchem.2015.06.096
  • Zhang, Y., Zhao, Y. R., Shen, G. P., Zhong, S., & Feng, J. H. (2018). NMR spectroscopy in conjugation with multivariate statistical analysis for distinguishing plant origin of edible oils. Journal of Food Composition and Analysis, 69, 140–148. https://doi.org/10.1016/j.jfca.2018.03.006
  • Zhou, X. J., Dai, L. K., & Li, S. (2012). Fast discrimination of edible vegetable oil based on Raman spectroscopy. Spectroscopy and Spectral Analysis, 32(7), 1829–1833. https://doi.org/10.3964/j.issn.1000-0593(2012)07-1829-05