5,147
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Bioactive compounds in potato peels, extraction methods, and their applications in the food industry: a review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 418-432 | Received 06 Dec 2022, Accepted 10 May 2023, Published online: 17 May 2023

References

  • Abebaw, G. (2020). Review on: Its potentials and application of potato peel (waste). Journal of Aquaculture & Livestock Production, 1(1), 1–4. https://doi.org/10.47363/jalp/2020(1)104
  • Akter, M., Anjum, N., Roy, F., Yasmin, S., Sohany, M., & Mahomud, M. S. (2023). Effect of drying methods on physicochemical, antioxidant and functional properties of potato peel flour and quality evaluation of potato peel composite cake. Journal of Agriculture and Food Research, 11, 100508. https://doi.org/10.1016/j.jafr.2023.100508
  • Akyol, H., Riciputi, Y., Capanoglu, E., Caboni, M., & Verardo, V. (2016). Phenolic compounds in the potato and its byproducts: An overview. International Journal of Molecular Sciences, 17(6), 835. https://doi.org/10.3390/ijms17060835
  • Al-Weshahy, A., El-Nokety, M., Bakhete, M., & Rao, V. (2013). Effect of storage on antioxidant activity of freeze-dried potato peels. Food Research International, 50(2), 507–512. https://doi.org/10.1016/j.foodres.2010.12.014
  • Al-Weshahy, A., & Rao, V. A. (2012). Potato peel as a source of important phytochemical antioxidant nutraceuticals and their role in human health - A review. In Phytochemicals as nutraceuticals - Global approaches to their role in nutrition and health (pp. 207–224). InTech. https://doi.org/10.5772/30459
  • Alara, O. R., Abdurahman, N. H., & Ukaegbu, C. I. (2021). Extraction of phenolic compounds: A review. Current Research in Food Science, 4(March), 200–214. https://doi.org/10.1016/j.crfs.2021.03.011
  • Albishi, T., John, J. A., Al-Khalifa, A. S., & Shahidi, F. (2013). Phenolic content and antioxidant activities of selected potato varieties and their processing by-products. Journal of Functional Foods, 5(2), 590–600. https://doi.org/10.1016/j.jff.2012.11.019
  • Alves-Filho, E. G., Sousa, V. M., Ribeiro, P. R. V., Rodrigues, S., de Brito, E. S., Tiwari, B. K., & Fernandes, F. A. N. (2018). Single-stage ultrasound-assisted process to extract and convert α-solanine and α-chaconine from potato peels into β-solanine and β-chaconine. Biomass Conversion and Biorefinery, 8(3), 689–697. https://doi.org/10.1007/s13399-018-0317-7
  • Amado, I. R., Franco, D., Sánchez, M., Zapata, C., & Vázquez, J. A. (2014). Optimisation of antioxidant extraction from Solanum tuberosum potato peel waste by surface response methodology. Food Chemistry, 165, 290–299. https://doi.org/10.1016/j.foodchem.2014.05.103
  • Ampofo, J., & Ngadi, M. (2022). Ultrasound-assisted processing: Science, technology and challenges for the plant-based protein industry. Ultrasonics Sonochemistry, 84(November 2021), 105955. https://doi.org/10.1016/j.ultsonch.2022.105955
  • An, Y., Lu, W., Li, W., Pan, L., Lu, M., Cesarino, I., Li, Z., & Zeng, W. (2022). Dietary fiber in plant cell walls-the healthy carbohydrates. Food Quality and Safety, 6(December 2021), 1–17. https://doi.org/10.1093/fqsafe/fyab037
  • Apel, C., Lyng, J. G., Papoutsis, K., Harrison, S. M., & Brunton, N. P. (2020). Screening the effect of different extraction methods (ultrasound-assisted extraction and solid–liquid extraction) on the recovery of glycoalkaloids from potato peels: Optimisation of the extraction conditions using chemometric tools. Food and Bioproducts Processing, 119, 277–286. https://doi.org/10.1016/j.fbp.2019.06.018
  • Arun, K. B., Chandran, J., Dhanya, R., Krishna, P., Jayamurthy, P., & Nisha, P. (2015). A comparative evaluation of antioxidant and antidiabetic potential of peel from young and matured potato. Food Bioscience, 9, 36–46. https://doi.org/10.1016/j.fbio.2014.10.003
  • Azizi, A. F., Sethi, S., Joshi, A., & Arora, B. (2021). Utilisation of potato peel in fabricated potato snack. Potato Research, 64(4), 587–599. https://doi.org/10.1007/s11540-021-09492-2
  • Badr, S. A., & El-Waseif, M. A. (2018). Effect of dietary fiber in potato peels powder addition as fat replacer on quality characteristics and energy value of beef meatballs. Journal of Biological Chemistry and Environmental Sciences, 13(1), 145–160.
  • Bellumori, M., Silva, N. A. C., Vilca, L., Andrenelli, L., Cecchi, L., Innocenti, M., Balli, D., & Mulinacci, N. (2020). A study on the biodiversity of pigmented Andean potatoes: Nutritional profile and phenolic composition. Molecules, 25(14), 3169. https://doi.org/10.3390/molecules25143169
  • Ben Jeddou, K., Bouaziz, F., Zouari Ellouzi, S., Chaari, F., Ellouz-Chaabouni, S., Ellouz-Ghorbel, R., & Nouri Ellouz, O. (2017). Improvement of texture and sensory properties of cakes by addition of potato peel powder with high level of dietary fiber and protein. Food Chemistry, 217, 668–677. https://doi.org/10.1016/j.foodchem.2016.08.081
  • Benavides, R., Revelo, Y. A., Osorio, O., & Arango, O. (2020). Extracción asistida con ultrasonido de compuestos fenólicos de dos variedades de papas (Solanum phureja) nativas andinas y evaluación de su actividad antioxidante Ultrasound-assisted extraction of phenolic compounds from two varieties of an Andean nativ. Información tecnológica, 31(5), 43–50. https://doi.org/10.4067/S0718-07642020000500043
  • Benkeblia, N. (2020). Potato glycoalkaloids: Occurrence, biological activities and extraction for biovalorisation – A review. International Journal of Food Science & Technology, 55(6), 2305–2313. https://doi.org/10.1111/ijfs.14330
  • Bocker, R., & Silva, E. K. (2022). Pulsed electric field assisted extraction of natural food pigments and colorings from plant matrices. Food Chemistry: X, 15(October 2021), 100398. https://doi.org/10.1016/j.fochx.2022.100398
  • Brahmi, F., Mateos-Aparicio, I., Garcia-Alonso, A., Abaci, N., Saoudi, S., Smail Benazzouz, L., Guemghar-Haddadi, H., Madani, K., & Boulekbache-Makhlouf, L. (2022). Optimization of conventional extraction parameters for recovering phenolic compounds from potato (Solanum tuberosum L.) peels and their application as an antioxidant in yogurt formulation. Antioxidants, 11(7), 1401. https://doi.org/10.3390/antiox11071401
  • Bvenura, C., Witbooi, H., & Kambizi, L. (2022). Pigmented potatoes: A potential panacea for food and nutrition security and health? Foods, 11(2), 175. https://doi.org/10.3390/foods11020175
  • Calliope, S. R., Lobo, M. O., & Sammán, N. C. (2018). Biodiversity of Andean potatoes: Morphological, nutritional and functional characterization. Food Chemistry, 238, 42–50. https://doi.org/10.1016/j.foodchem.2016.12.074
  • Cardoso, L. C., Serrano, C. M., Quintero, E. T., López, C. P., Antezana, R. M., & De La Ossa, E. J. M. (2013). High pressure extraction of antioxidants from Solanum stenotomun peel. Molecules, 18(3), 3137–3151. https://doi.org/10.3390/molecules18033137
  • Chaves Morillo, D., Bolaños Patiño, V., Bucheli Jurado, M., & Osorio Mora, O. (2016). Microwave-assisted extraction of antioxidants compounds from potato peel (Solanum tuberosum). Vitae, 23(1), S635–639.
  • Choi, S. H., Kozukue, N., Kim, H. J., & Friedman, M. (2016). Analysis of protein amino acids, non-protein amino acids and metabolites, dietary protein, glucose, fructose, sucrose, of potato tubers, peels, and cortexes (pulps). Journal of Food Composition & Analysis, 50, 77–87. https://doi.org/10.1016/j.jfca.2016.05.011
  • CIP. (2020). Potato facts and pictures. https://cipotato.org/potato/potato-facts-and-figures/
  • CIP. (2023). Papa - Datos y cifras de la papa. https://cipotato.org/es/potato/
  • Crawford, L. M., Kahlon, T. S., Wang, S. C., & Friedman, M. (2019). Acrylamide content of experimental flatbreads prepared from potato, quinoa, and wheat flours with added fruit and vegetable peels and mushroom powders. Foods, 8(7), 5–7. https://doi.org/10.3390/foods8070228
  • Curti, E., Carini, E., Diantom, A., & Vittadini, E. (2016). The use of potato fibre to improve bread physico-chemical properties during storage. Food Chemistry, 195, 64–70. https://doi.org/10.1016/j.foodchem.2015.03.092
  • De Andrade Lima, M., Andreou, R., Charalampopoulos, D., & Chatzifragkou, A. (2021). Supercritical carbon dioxide extraction of phenolic compounds from potato (Solanum tuberosum) peels. Applied Sciences, 11(8), 3410. https://doi.org/10.3390/app11083410
  • De Andrade Lima, M., Charalampopoulos, D., & Chatzifragkou, A. (2018, July 2017). Optimisation and modelling of supercritical CO2 extraction process of carotenoids from carrot peels. The Journal of Supercritical Fluids, 133, 94–102. https://doi.org/10.1016/j.supflu.2017.09.028
  • Diantom, A., Boukid, F., Carini, E., Curti, E., & Vittadini, E. (2020). Can potato fiber efficiently substitute xanthan gum in modulating chemical properties of tomato products? Food Hydrocolloids, 101, 105508. https://doi.org/10.1016/j.foodhyd.2019.105508
  • Dong, Y., Hao, L., Shi, Z., Fang, K., Yu, H., Zang, G., Fan, T., Han, C., & Yang, D. -H. (2022). Solasonine induces apoptosis and inhibits proliferation of bladder cancer cells by suppressing NRP1 expression. Journal of Oncology, 2022, 1–15. https://doi.org/10.1155/2022/7261486
  • Durmaz, A., & Yuksel, F. (2021). Deep fried wheat chips added with potato peel flour—Effect on quality parameters. Quality Assurance and Safety of Crops & Foods, 13(1), 115–124. https://doi.org/10.15586/qas.v13i1.844
  • Dusuki, N. J. S., Abu Bakar, M. F., Abu Bakar, F. I., Ismail, N. A., & Azman, M. I. (2020). Proximate composition and antioxidant potential of selected tubers peel. Food Research, 4(1), 121–126. https://doi.org/10.26656/fr.2017.4(1).178
  • Ebringerová, A., & Hromádková, Z. (2010). An overview on the application of ultrasound in extraction, separation and purification of plant polysaccharides. Central European Journal of Chemistry, 8(2), 243–257. https://doi.org/10.2478/s11532-010-0006-2
  • Eraso-Grisales, S., Mejía-España, D., & Hurtado Benavides, A. (2019). Extracción de glicoalcaloides de papa nativa (Solanum phureja) variedad ratona morada con líquidos presurizados. Revista Colombiana de Ciencias Químico-Farmacéuticas, 48(1), 181–197. https://doi.org/10.15446/rcciquifa.v48n1.80074
  • Espíndola, K. M. M., Ferreira, R. G., Narvaez, L. E. M., Silva Rosario, A. C. R., da Silva, A. H. M., Silva, A. G. B., Vieira, A. P. O., & Monteiro, M. C. (2019). Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Frontiers in Oncology, 9, 9. https://doi.org/10.3389/fonc.2019.00541
  • European Food Safety Authority (EFSA). (2020). Outcome of a public consultation on the draft risk assessment of glycoalkaloids in feed and food, in particular in potatoes and potato‐derived products. EFSA Supporting Publications, 17(8). https://doi.org/10.2903/sp.efsa.2020.EN-1905
  • Forni, C., Rossi, M., Borromeo, I., Feriotto, G., Platamone, G., Tabolacci, C., Mischiati, C., & Beninati, S. (2021). Flavonoids: A myth or a reality for cancer therapy? Molecules, 26(12), 3583. https://doi.org/10.3390/molecules26123583
  • Fradinho, P., Oliveira, A., Domínguez, H., Torres, M. D., Sousa, I., & Raymundo, A. (2020). Improving the nutritional performance of gluten-free pasta with potato peel autohydrolysis extract. Innovative Food Science & Emerging Technologies, 63, 102374. https://doi.org/10.1016/j.ifset.2020.102374
  • Franco, D., Pateiro, M., Rodríguez Amado, I., López Pedrouso, M., Zapata, C., Vázquez, J. A., & Lorenzo, J. M. (2016). Antioxidant ability of potato (Solanum tuberosum) peel extracts to inhibit soybean oil oxidation. European Journal of Lipid Science & Technology, 118(12), 1891–1902. https://doi.org/10.1002/ejlt.201500419
  • Friedman, M. (2006). Potato glycoalkaloids and metabolites: Roles in the plant and in the diet. Journal of Agricultural & Food Chemistry, 54(23), 8655–8681. https://doi.org/10.1021/jf061471t
  • Friedman, M., Kozukue, N., Kim, H. J., Choi, S. H., & Mizuno, M. (2017). Glycoalkaloid, phenolic, and flavonoid content and antioxidative activities of conventional nonorganic and organic potato peel powders from commercial gold, red, and Russet potatoes. Journal of Food Composition & Analysis, 62(March), 69–75. https://doi.org/10.1016/j.jfca.2017.04.019
  • Frontuto, D., Carullo, D., Harrison, S. M., Brunton, N. P., Ferrari, G., Lyng, J. G., & Pataro, G. (2019). Optimization of pulsed electric fields-assisted extraction of polyphenols from potato peels using response surface methodology. Food and Bioprocess Technology, 12(10), 1708–1720. https://doi.org/10.1007/s11947-019-02320-z
  • Gaudino, E. C., Colletti, A., Grillo, G., Tabasso, S., & Cravotto, G. (2020). Emerging processing technologies for the recovery of valuable bioactive compounds from potato peels. Foods, 9(11), 1–19. https://doi.org/10.3390/foods9111598
  • Gebrechristos, H. Y., Ma, X., Xiao, F., He, Y., Zheng, S., Oyungerel, G., & Chen, W. (2020). Potato peel extracts as an antimicrobial and potential antioxidant in active edible film. Food Science and Nutrition, 8(12), 6338–6345. https://doi.org/10.1002/fsn3.1119
  • Gil-Martín, E., Forbes-Hernández, T., Romero, A., Cianciosi, D., Giampieri, F., & Battino, M. (2022). Influence of the extraction method on the recovery of bioactive phenolic compounds from food industry by-products. Food Chemistry, 378, 131918. https://doi.org/10.1016/j.foodchem.2021.131918
  • Gu, T., Yuan, W., Li, C., Chen, Z., Wen, Y., Zheng, Q., Yang, Q., Xiong, X., & Yuan, A. (2021). α-Solanine inhibits proliferation, invasion, and migration, and induces apoptosis in human choriocarcinoma JEG-3 cells in vitro and in vivo. Toxins, 13(3), 210. https://doi.org/10.3390/TOXINS13030210
  • He, Y., Wang, B., Wen, L., Wang, F., Yu, H., Chen, D., Su, X., & Zhang, C. (2022). Effects of dietary fiber on human health. Food Science and Human Wellness, 11(1), 1–10. https://doi.org/10.1016/j.fshw.2021.07.001
  • Hossain, M. B., Aguiló-Aguayo, I., Lyng, J. G., Brunton, N. P., & Rai, D. K. (2015). Effect of pulsed electric field and pulsed light pre-treatment on the extraction of steroidal alkaloids from potato peels. Innovative Food Science & Emerging Technologies, 29, 9–14. https://doi.org/10.1016/j.ifset.2014.10.014
  • Hossain, M. B., Rawson, A., Aguiló-Aguayo, I., Brunton, N. P., & Rai, D. K. (2015). Recovery of steroidal alkaloids from potato peels using pressurized liquid extraction. Molecules, 20(5), 8560–8573. https://doi.org/10.3390/molecules20058560
  • Hossain, M. B., Tiwari, B. K., Gangopadhyay, N., O’Donnell, C. P., Brunton, N. P., & Rai, D. K. (2014). Ultrasonic extraction of steroidal alkaloids from potato peel waste. Ultrasonics Sonochemistry, 21(4), 1470–1476. https://doi.org/10.1016/j.ultsonch.2014.01.023
  • Jacinto, G., Stieven, A., Maciel, M. J., & de Souza, C. F. V. (2020). Effect of potato peel, pumpkin seed, and quinoa flours on sensory and chemical characteristics of gluten-free breads. Brazilian Journal of Food Technology, 23. https://doi.org/10.1590/1981-6723.16919
  • Javed, A., Ahmad, A., Tahir, A., Shabbir, U., Nouman, M., & Hameed, A. (2019). Potato peel waste—Its nutraceutical, industrial and biotechnological applacations. AIMS Agriculture and Food, 4(3), 807–823. https://doi.org/10.3934/agrfood.2019.3.807
  • Jiang, T., Mao, Y., Sui, L., Yang, N., Li, S., Zhu, Z., Wang, C., Yin, S., He, J., & He, Y. (2019). Degradation of anthocyanins and polymeric color formation during heat treatment of purple sweet potato extract at different pH. Food Chemistry, 274, 460–470. https://doi.org/10.1016/j.foodchem.2018.07.141
  • Jiang, Z., Chen, J., Ge, Y., Chen, Z., Cheng, L., & Xu, L. (2018). Optimization of extraction of flavonoids from potato peel and research on its antioxidant activity. Journal of the Chinese Cereals and Oils Association, 33(8), 69–74.
  • Jiménez, M. E., Rossi, A. M., & Sammán, N. C. (2009). Phenotypic, agronomic and nutritional characteristics of seven varieties of Andean potatoes. Journal of Food Composition & Analysis, 22(6), 613–616. https://doi.org/10.1016/j.jfca.2008.08.004
  • Jin, C. Y., Liu, H., Xu, D., Zeng, F. K., Zhao, Y. C., Zhang, H., & Liu, G. (2018). Glycoalkaloids and phenolic compounds in three commercial potato cultivars grown in Hebei, China. Food Science and Human Wellness, 7(2), 156–162. https://doi.org/10.1016/j.fshw.2018.02.001
  • Joshi, A., Sethi, S., Arora, B., Azizi, A. F., & Thippeswamy, B. (2020). Potato peel composition and utilization. Potato, 229–245. https://doi.org/10.1007/978-981-15-7662-1_13
  • Kapadia, P., Newell, A. S., Cunningham, J., Roberts, M. R., & Hardy, J. G. (2022). Extraction of high-value chemicals from plants for technical and medical applications. International Journal of Molecular Sciences, 23(18), 10334. https://doi.org/10.3390/ijms231810334
  • Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A. S., & Chemat, F. (2021). Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrasonics Sonochemistry, 76, 105625. https://doi.org/10.1016/j.ultsonch.2021.105625
  • Kim, H. S., Ko, M. J., Park, C. H., & Chung, M. S. (2022). Application of pulsed electric field as a pre-treatment for subcritical water extraction of quercetin from onion skin. Foods, 11(8), 1069. https://doi.org/10.3390/foods11081069
  • Kim, J., Soh, S. Y., Bae, H., & Nam, S. Y. (2019). Antioxidant and phenolic contents in potatoes (Solanum tuberosum L.) and micropropagated potatoes. Applied Biological Chemistry, 62(1). https://doi.org/10.1186/s13765-019-0422-8
  • King, J. W., Mohamed, A., Taylor, S. L., Mebrahtu, T., & Paul, C. (2001). Supercritical fluid extraction of Vernonia galamensis seeds. Industrial Crops and Products, 14(3), 241–249. https://doi.org/10.1016/S0926-6690(01)00089-9
  • Kumar, R., Sharma, A., Iqbal, M. S., & Srivastava, J. K. (2020). Therapeutic promises of chlorogenic acid with special emphasis on its anti-obesity property. Current Molecular Pharmacology, 13(1), 7–16. https://doi.org/10.2174/1874467212666190716145210
  • Kumari, B., Tiwari, B. K., Hossain, M. B., Rai, D. K., & Brunton, N. P. (2017). Ultrasound-assisted extraction of polyphenols from potato peels: Profiling and kinetic modelling. International Journal of Food Science & Technology, 52(6), 1432–1439. https://doi.org/10.1111/ijfs.13404
  • Lachman, J., & Hamouz, K. (2005). Red and purple coloured potatoes as a significant antioxidant source in human nutrition - A review. Plant, Soil & Environment, 51(11), 477–482. https://doi.org/10.17221/3620-pse
  • Lakka, A., Lalas, S., & Makris, D. P. (2020). Development of a low-temperature and high-performance green extraction process for the recovery of polyphenolic phytochemicals from waste potato peels using hydroxypropyl β-cyclodextrin. Applied Sciences (Switzerland), 10(10), 3611. https://doi.org/10.3390/app10103611
  • Lee, K. G., Lee, S. G., Lee, H. H., Lee, H. J., Shin, J. S., Kim, N. J., An, H. J., Nam, J. H., Jang, D. S., & Lee, K. T. (2015). α-Chaconine isolated from a Solanum tuberosum L. cv Jayoung suppresses lipopolysaccharide-induced pro-inflammatory mediators via AP-1 inactivation in RAW 264.7 macrophages and protects mice from endotoxin shock. Chemico-Biological Interactions, 235, 85–94. https://doi.org/10.1016/j.cbi.2015.04.015
  • Lefebvre, T., Destandau, E., & Lesellier, E. (2021). Selective extraction of bioactive compounds from plants using recent extraction techniques: A review. Journal of Chromatography A, 1635, 461770. https://doi.org/10.1016/j.chroma.2020.461770
  • Li, C. L., Yu, S. Y., & Lu, Y. (2019). Study on extraction of dietary fiber from potato peel by acid-base chemical method. IOP Conference Series: Earth & Environmental Science, 267(5), 052028. https://doi.org/10.1088/1755-1315/267/5/052028
  • Li, H., Li, M., Fan, Y., Liu, Y., & Qin, S. (2023). Antifungal activity of potato glycoalkaloids and its potential to control severity of dry rot caused by Fusarium sulphureum. Crop Science, 63(2), 801–811. https://doi.org/10.1002/csc2.20874
  • Li, T., Chen, N., Chen, Y., He, B., & Zhou, Z. (2022). Solasonine induces apoptosis of the SGC‐7901 human gastric cancer cell line in vitro via the mitochondria‐mediated pathway. Journal of Cellular and Molecular Medicine, 26(12), 3387–3395. https://doi.org/10.1111/jcmm.17343
  • Lopes, J., Gonçalves, I., Nunes, C., Teixeira, B., Mendes, R., Ferreira, P., & Coimbra, M. A. (2021). Potato peel phenolics as additives for developing active starch-based films with potential to pack smoked fish fillets. Food Packaging and Shelf Life, 28(December 2020), 100644. https://doi.org/10.1016/j.fpsl.2021.100644
  • Ma, Q., Ma, Z., Wang, W., Mu, J., Liu, Y., Wang, J., Stipkovits, L., Hui, X., Wu, G., & Sun, J. (2022). The effects of enzymatic modification on the functional ingredient - Dietary fiber extracted from potato residue. Lwt, 153(September 2021), 112511. https://doi.org/10.1016/j.lwt.2021.112511
  • Ma, Y., Zhao, H., Ma, Q., Cheng, D., Zhang, Y., Wang, W., Wang, J., & Sun, J. (2022). Development of chitosan/potato peel polyphenols nanoparticles driven extended-release antioxidant films based on potato starch. Food Packaging and Shelf Life, 31(November 2021), 100793. https://doi.org/10.1016/j.fpsl.2021.100793
  • Makori, S. I., Mu, T. H., & Sun, H. N. (2022). Profiling of polyphenols, flavonoids and anthocyanins in potato peel and flesh from four potato varieties. Potato Research, 65(1), 193–208. https://doi.org/10.1007/s11540-021-09516-x
  • Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: Food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727–747. https://doi.org/10.1093/ajcn/79.5.727
  • Martínez-Inda, B., Esparza, I., Moler, J. A., Jiménez-Moreno, N., & Ancín-Azpilicueta, C. (2023). Valorization of agri-food waste through the extraction of bioactive molecules. Prediction of their sunscreen action. Journal of Environmental Management, 325, 116460. https://doi.org/10.1016/j.jenvman.2022.116460
  • Maxwell, O. I., Chinwuba, U. B., & Onyebuchukwu, M. G. (2019). Protein enrichment of potato peels using saccharomyces cerevisiae via solid-state fermentation process. Advances in Chemical Engineering and Science, 09(01), 99–108. https://doi.org/10.4236/aces.2019.91008
  • Namir, M., Iskander, A., Alyamani, A., Sayed-Ahmed, E., Saad, A., Elsahy, K., El-Tarabily, K., & Conte-Junior, C. (2022). Upgrading common wheat pasta by fiber-rich fraction of potato peel byproduct at different particle sizes: Effects on physicochemical, thermal, and sensory properties. Molecules, 27(9), 2868. https://doi.org/10.3390/molecules27092868
  • Navarre, D. A., Goyer, A., & Shakya, R. (2009). Nutritional value of potatoes: vitamin, phytonutrient, and mineral content. In Advances in potato chemistry and technology ( First Edit, pp. 395–424). Elsevier. https://doi.org/10.1016/B978-0-12-374349-7.00014-3
  • Naviglio, D., Scarano, P., Ciaravolo, M., & Gallo, M. (2019). Rapid solid-liquid dynamic extraction (RSLDE): A powerful and greener alternative to the latest solid-liquid extraction techniques. Foods, 8(7), 1–22. https://doi.org/10.3390/foods8070245
  • Oertel, A., Matros, A., Hartmann, A., Arapitsas, P., Dehmer, K. J., Martens, S., & Mock, H. -P. (2017). Metabolite profiling of red and blue potatoes revealed cultivar and tissue specific patterns for anthocyanins and other polyphenols. Planta, 246(2), 281–297. https://doi.org/10.1007/s00425-017-2718-4
  • Pagano, I., Campone, L., Celano, R., Piccinelli, A. L., & Rastrelli, L. (2021). Green non-conventional techniques for the extraction of polyphenols from agricultural food by-products: A review. Journal of Chromatography A, 1651, 462295. https://doi.org/10.1016/j.chroma.2021.462295
  • Pai, S., Hebbar, A., & Selvaraj, S. (2022). A critical look at challenges and future scopes of bioactive compounds and their incorporations in the food, energy, and pharmaceutical sector. Environmental Science & Pollution Research, 29(24), 35518–35541. https://doi.org/10.1007/s11356-022-19423-4
  • Palos-Hernández, A., Gutiérrez Fernández, M. Y., Escuadra Burrieza, J., Pérez-Iglesias, J. L., & González-Paramás, A. M. (2022). Obtaining green extracts rich in phenolic compounds from underexploited food by-products using natural deep eutectic solvents. Opportunities and challenges. Sustainable Chemistry and Pharmacy, 29(February), 100773. https://doi.org/10.1016/j.scp.2022.100773
  • Pathania, S., & Kaur, N. (2022). Utilization of fruits and vegetable by-products for isolation of dietary fibres and its potential application as functional ingredients. Bioactive Carbohydrates & Dietary Fibre, 27(February 2021), 100295. https://doi.org/10.1016/j.bcdf.2021.100295
  • Pattnaik, M., Pandey, P., Martin, G. J. O., Mishra, H. N., & Ashokkumar, M. (2021). Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods, 10(2), 1–30. https://doi.org/10.3390/foods10020279
  • Peña, C. B., & Restrepo, L. P. (2013). Compuestos fenólicos y carotenoides en la papa : revisión. Actualización En Nutrición, 14(1), 25–32.
  • Peterson, J., & Dwyer, J. (1998). Taxonomic classification helps identify flavonoid-containing foods on a semiquantitative food frequency questionnaire. Journal of the American Dietetic Association, 98(6), 677–685. https://doi.org/10.1016/S0002-8223(98)00153-9
  • Popoola-Akinola, O. O., Raji, T. J., & Olawoye, B. (2022). Lignocellulose, dietary fibre, inulin and their potential application in food. Heliyon, 8(8), e10459. https://doi.org/10.1016/j.heliyon.2022.e10459
  • Procentese, A., Raganati, F., Olivieri, G., Russo, M. E., Rehmann, L., & Marzocchella, A. (2018). Deep eutectic solvents pretreatment of agro-industrial food waste. Biotechnology for Biofuels, 11 (1). https://doi.org/10.1186/s13068-018-1034-y
  • Rasheed, H., Ahmad, D., & Bao, J. (2022). Genetic diversity and health properties of polyphenols in potato. Antioxidants, 11(4), 603. https://doi.org/10.3390/antiox11040603
  • Rezende, E. S. V., Lima, G. C., & Naves, M. M. V. (2021). Dietary fibers as beneficial microbiota modulators: A proposal classification by prebiotic categories. Nutrition, 89, 111217. https://doi.org/10.1016/j.nut.2021.111217
  • Rifna, E. J., Misra, N. N., & Dwivedi, M. (2021). Recent advances in extraction technologies for recovery of bioactive compounds derived from fruit and vegetable waste peels: A review. Critical Reviews in Food Science and Nutrition, 1–34. https://doi.org/10.1080/10408398.2021.1952923
  • Rodriguez de Sotillo, D. V., Hadley, M., & Sotillo, J. E. (2006). Insulin receptor exon 11± is expressed in Zucker (fa/fa) rats, and chlorogenic acid modifies their plasma insulin and liver protein and DNA. The Journal of Nutritional Biochemistry, 17(1), 63–71. https://doi.org/10.1016/j.jnutbio.2005.06.004
  • Rodríguez-Martínez, B., Gullón, B., & Yáñez, R. (2021). Identification and recovery of valuable bioactive compounds from potato peels: A comprehensive review. Antioxidants, 10(10), 1–18. https://doi.org/10.3390/antiox10101630
  • Rommi, K., Rahikainen, J., Vartiainen, J., Holopainen, U., Lahtinen, P., Honkapää, K., & Lantto, R. (2016). Potato peeling costreams as raw materials for biopolymer film preparation. Journal of Applied Polymer Science, 133(5). https://doi.org/10.1002/app.42862
  • Rytel, E., Tajner-Czopek, A., Kita, A., Tkaczyńska, A., Kucharska, A. Z., & Sokół-Łętowska, A. (2021). The influence of the production process on the anthocyanin content and composition in dried potato cubes, chips, and French fries made from red-fleshed potatoes. Applied Sciences (Switzerland), 11(3), 1–11. https://doi.org/10.3390/app11031104
  • Sabeena Farvin, K. H., Grejsen, H. D., & Jacobsen, C. (2012). Potato peel extract as a natural antioxidant in chilled storage of minced horse mackerel (trachurus trachurus): Effect on lipid and protein oxidation. Food Chemistry, 131(3), 843–851. https://doi.org/10.1016/j.foodchem.2011.09.056
  • Saeed, A., Shabbir, A., & Khan, A. (2022). Stabilization of sunflower oil by using potato peel extract as a natural antioxidant. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-022-02696-7
  • Samotyja, U. (2019). Potato peel as a sustainable resource of natural antioxidants for the food industry. Potato Research, 62(4), 435–451. https://doi.org/10.1007/s11540-019-9419-2
  • Sampaio, S. L., Lonchamp, J., Dias, M. I., Liddle, C., Petropoulos, S. A., Glamočlija, J., Alexopoulos, A., Santos-Buelga, C., Ferreira, I. C. F. R., & Barros, L. (2021). Anthocyanin-rich extracts from purple and red potatoes as natural colourants: Bioactive properties, application in a soft drink formulation and sensory analysis. Food Chemistry, 342(November 2020), 128526. https://doi.org/10.1016/j.foodchem.2020.128526
  • Sampaio, S. L., Petropoulos, S. A., Alexopoulos, A., Heleno, S. A., Santos-Buelga, C., Barros, L., & Ferreira, I. C. F. R. (2020). Potato peels as sources of functional compounds for the food industry: A review. Trends in Food Science & Technology, 103(July), 118–129. https://doi.org/10.1016/j.tifs.2020.07.015
  • Sampaio, S. L., Petropoulos, S. A., Dias, M. I., Pereira, C., Calhelha, R. C., Fernandes, Â., Leme, C. M. M., Alexopoulos, A., Santos-Buelga, C., Ferreira, I. C. F. R., & Barros, L. (2021). Phenolic composition and cell-based biological activities of ten coloured potato peels (Solanum tuberosum L.). Food Chemistry, 363(June), 130360. https://doi.org/10.1016/j.foodchem.2021.130360
  • Samtiya, M., Aluko, R. E., Dhewa, T., & Moreno-Rojas, J. M. (2021). Potential health benefits of plant food-derived bioactive components: An overview. Foods, 10(4), 839. https://doi.org/10.3390/foods10040839
  • Sengar, A. S., Thirunavookarasu, N., Choudhary, P., Naik, M., Surekha, A., Sunil, C. K., & Rawson, A. (2022). Application of power ultrasound for plant protein extraction, modification and allergen reduction – a review. Applied Food Research, 2(2), 100219. https://doi.org/10.1016/j.afres.2022.100219
  • Sharma, S. K., Bansal, S., Mangal, M., Dixit, A. K., Gupta, R. K., & Mangal, A. K. (2016). Utilization of food processing by-products as dietary, functional, and novel fiber: A review. Critical Reviews in Food Science and Nutrition, 56(10), 1647–1661. https://doi.org/10.1080/10408398.2013.794327
  • Shen, N., Wang, T., Gan, Q., Liu, S., Wang, L., & Jin, B. (2022). Plant flavonoids: Classification, distribution, biosynthesis, and antioxidant activity. In Food chemistry (Vol. 383). Elsevier Ltd. https://doi.org/10.1016/j.foodchem.2022.132531
  • Shen, W., Qi, R., Zhang, J., Wang, Z., Wang, H., Hu, C., Zhao, Y., Bie, M., Wang, Y., Fu, Y., Chen, M., & Lu, D. (2012). Chlorogenic acid inhibits LPS-induced microglial activation and improves survival of dopaminergic neurons. Brain Research Bulletin, 88(5), 487–494. https://doi.org/10.1016/j.brainresbull.2012.04.010
  • Silva, H., & Lopes, N. M. F. (2020). Cardiovascular effects of caffeic acid and its derivatives: A comprehensive review. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.595516
  • Silva-Beltrán, N. P., Chaidez-Quiroz, C., López-Cuevas, O., Ruiz-Cruz, S., López-Mata, M. A., Del-Toro-Sánchez, C. L., Marquez-Rios, E., & Ornelas-Paz, J. D. J. (2017). Phenolic compounds of potato peel extracts: Their antioxidant activity and protection against human enteric viruses. Journal of Microbiology and Biotechnology, 27(2), 234–241. https://doi.org/10.4014/jmb.1606.06007
  • Singh, A., Nair, G. R., Liplap, P., Gariepy, Y., Orsat, V., & Raghavan, V. (2014). Effect of dielectric properties of a solvent-water mixture used in microwave-assisted extraction of antioxidants from potato peels. Antioxidants, 3(1), 99–113. https://doi.org/10.3390/antiox3010099
  • Singh, B., Singh, J., & Singh, J. P., Kaur, A., & Singh, N. (2020). Phenolic compounds in potato (Solanum tuberosum L.) peel and their health-promoting activities. International Journal of Food Science & Technology, 55(6), 2273–2281. https://doi.org/10.1111/ijfs.14361
  • Suresh, P. V., Kudre, T. G., & Johny, L. C. (2018). Sustainable valorization of seafood processing by-product/discard. In Energy, environment, and sustainability (pp. 111–139). Springer Nature. https://doi.org/10.1007/978-981-10-7431-8_7
  • Tajik, N., Tajik, M., Mack, I., & Enck, P. (2017). The potential effects of chlorogenic acid, the main phenolic components in coffee, on health: A comprehensive review of the literature. European Journal of Nutrition, 56(7), 2215–2244. https://doi.org/10.1007/s00394-017-1379-1
  • Thilakarathna, S., & Rupasinghe, H. (2013). Flavonoid bioavailability and attempts for bioavailability enhancement. Nutrients, 5(9), 3367–3387. https://doi.org/10.3390/nu5093367
  • Tierno, R., Hornero-Méndez, D., Gallardo-Guerrero, L., López-Pardo, R., & de Galarreta, J. I. R. (2015). Effect of boiling on the total phenolic, anthocyanin and carotenoid concentrations of potato tubers from selected cultivars and introgressed breeding lines from native potato species. Journal of Food Composition & Analysis, 41, 58–65. https://doi.org/10.1016/j.jfca.2015.01.013
  • Valiñas, M. A., Lanteri, M. L., ten Have, A., & Andreu, A. B. (2017). Chlorogenic acid, anthocyanin and flavan-3-ol biosynthesis in flesh and skin of Andean potato tubers (Solanum tuberosum subsp. andigena). Food Chemistry, 229, 837–846. https://doi.org/10.1016/j.foodchem.2017.02.150
  • Venturi, F., Bartolini, S., Sanmartin, C., Orlando, M., Taglieri, I., Macaluso, M., Lucchesini, M., Trivellini, A., Zinnai, A., & Mensuali, A. (2019). Potato peels as a source of novel green extracts suitable as antioxidant additives for fresh-cut fruits. Applied Sciences (Switzerland), 9(12), 1–14. https://doi.org/10.3390/app9122431
  • Villanueva Flores, R. M. (2019). Fibra dietaria: una alternativa para la alimentación. Ingeniería Industrial, 037(037), 229–242. https://doi.org/10.26439/ing.ind2019.n037.4550
  • Wu, Z., Xu, H., Ma, Q., Cao, Y., Ma, J., & Ma, C. (2012). Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chemistry, 135(4), 2425–2429. https://doi.org/10.1016/j.foodchem.2012.07.019
  • Xu, Q., Wang, S., Milliron, H., & Han, Q. (2022). The efficacy of phenolic compound extraction from potato peel waste. Processes, 10(11), 2326. https://doi.org/10.3390/pr10112326
  • Yalcin, H., & Çapar, T. D. (2017). Chapter 21 bioactive compounds of fruits and vegetables. Minimally Processed Refrigerated Fruits and Vegetables, 723–745. https://doi.org/10.1007/978-1-4939-7018-6
  • Yan, X., Li, M., Chen, L., Peng, X., Que, Z., An, H., Shen, K., & Hu, B. (2020). αSolanine inhibits growth and metastatic potential of human colorectal cancer cells. Oncology Reports. https://doi.org/10.3892/or.2020.7519
  • Yin, L., Chen, T., Li, Y., Fu, S., Li, L., Xu, M., & Niu, Y. (2016). A comparative study on total anthocyanin content, composition of anthocyanidin, total phenolic content and antioxidant activity of pigmented potato peel and flesh. Food Science and Technology Research, 22(2), 219–226. https://doi.org/10.3136/fstr.22.219
  • Yusoff, I. M., Mat Taher, Z., Rahmat, Z., & Chua, L. S. (2022). A review of ultrasound-assisted extraction for plant bioactive compounds: Phenolics, flavonoids, thymols, saponins and proteins. In Food research international (Vol. 157). Elsevier Ltd. https://doi.org/10.1016/j.foodres.2022.111268
  • Zhang, H., Tian, F., Jiang, P., Qian, S., Dai, X., Ma, B., Wang, M., Dai, H., Sha, X., Yang, Z., Zhu, X., & Sun, X. (2021). Solasonine Suppresses the proliferation of acute monocytic leukemia through the activation of the AMPK/FOXO3A axis. Frontiers in Oncology, 10, 10. https://doi.org/10.3389/fonc.2020.614067
  • Zhivkova, V. (2021). Determination of nutritional and mineral composition of wasted peels from garlic, onion and potato. Carpathian Journal of Food Science and Technology, 13(3), 134–146. https://doi.org/10.34302/crpjfst/2021.13.3.11