38
Views
101
CrossRef citations to date
0
Altmetric
Mammalian Genetic Models with Minimal or Complex Phenotypes

Disruption of the COP9 Signalosome Csn2 Subunit in Mice Causes Deficient Cell Proliferation, Accumulation of p53 and Cyclin E, and Early Embryonic Death

, , , , &
Pages 6790-6797 | Received 25 Apr 2003, Accepted 27 Jun 2003, Published online: 27 Mar 2023

REFERENCES

  • Akiyama, H., A. Sugiyama, K. Uzawa, N. Fujisawa, Y. Tashiro, and F. Tashiro. 2003. Implication of Trip15/CSN2 in early stage of neuronal differentiation of P19 embryonal carcinoma cells. Brain Res. Dev. Brain Res. 140: 45–56.
  • Altincicek, B., S. P. Tenbaum, U. Dressel, D. Thormeyer, R. Renkawitz, and A. Baniahmad. 2000. Interaction of the corepressor Alien with DAX-1 is abrogated by mutations of DAX-1 involved in adrenal hypoplasia congenita. J. Biol. Chem. 275: 7662–7667.
  • Bech-Otschir, D., R. Kraft, X. Huang, P. Henklein, B. Kapelari, C. Pollmann, and W. Dubiel. 2001. COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J. 20: 1630–1639.
  • Cohen, H., A. Azriel, T. Cohen, D. Meraro, S. Hashmueli, D. Bech-Otschir, R. Kraft, W. Dubiel, and B. Z. Levi. 2000. Interaction between interferon consensus sequence-binding protein and COP9/signalosome subunit CSN2 (Trip15). A possible link between interferon regulatory factor signaling and the COP9/signalosome. J. Biol. Chem. 275: 39081–39089.
  • Cope, G. A., G. S. Suh, L. Aravind, S. E. Schwarz, S. L. Zipursky, E. V. Koonin, and R. J. Deshaies. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298: 608–611.
  • Dealy, M. J., K. V. Nguyen, J. Lo, M. Gstaiger, W. Krek, D. Elson, J. Arbeit, E. T. Kipreos, and R. S. Johnson. 1999. Loss of Cul1 results in early embryonic lethality and dysregulation of cyclin E. Nat. Genet. 23: 245–248.
  • Deng, X. W., W. Dubiel, N. Wei, K. Hofmann, K. Mundt, J. Colicelli, J. Kato, M. Naumann, D. Segal, M. Seeger, A. Carr, M. Glickman, and D. A. Chamovitz. 2000. Unified nomenclature for the COP9 signalosome and its subunits: an essential regulator of development. Trends Genet. 16: 202–203.
  • Doronkin, S., I. Djagaeva, and S. K. Beckendorf. 2002. CSN5/Jab1 mutations affect axis formation in the Drosophila oocyte by activating a meiotic checkpoint. Development 129: 5053–5064.
  • Dressel, U., D. Thormeyer, B. Altincicek, A. Paululat, M. Eggert, S. Schneider, S. P. Tenbaum, R. Renkawitz, and A. Baniahmad. 1999. Alien, a highly conserved protein with characteristics of a corepressor for members of the nuclear hormone receptor superfamily. Mol. Cell. Biol. 19: 3383–3394.
  • Feldman, B., W. Poueymirou, V. E. Papaioannou, T. M. DeChiara, and M. Goldfarb. 1995. Requirement of FGF-4 for postimplantation mouse development. Science 267: 246–249.
  • Feng, S., M. Ligeng, W. Xiping, X. Daoxin, D. P. Savithramma, N. Wei, and X.-W. Deng. 2003. The COP9 signalosome physically interacts with SCFCOI1 and modulates jasmonate responses. Plant Cell 15: 1083–1094.
  • Freilich, S., E. Oron, Y. Kapp, Nevo- Y. Caspi, S. Orgad, D. Segal, and D. A. Chamovitz. 1999. The COP9 signalosome is essential for development of Drosophila melanogaster. Curr. Biol. 9: 1187–1190.
  • Furukawa, M., Y. Zhang, J. McCarville, T. Ohta, and Y. Xiong. 2000. The CUL1 C-terminal sequence and ROC1 are required for efficient nuclear accumulation, NEDD8 modification, and ubiquitin ligase activity of CUL1. Mol. Cell. Biol. 20: 8185–8197.
  • Glickman, M. H., D. M. Rubin, O. Coux, I. Wefes, G. Pfeifer, Z. Cjeka, W. Baumeister, V. A. Fried, and D. Finley. 1998. A subcomplex of the proteasome regulatory particle required for ubiquitin-conjugate degradation and related to the COP9-signalosome and eIF3. Cell 94: 615–623.
  • Goubeaud, A., S. Knirr, R. Renkawitz-Pohl, and A. Paululat. 1996. The Drosophila gene alien is expressed in the muscle attachment sites during embryogenesis and encodes a protein highly conserved between plants, Drosophila and vertebrates. Mech. Dev. 57: 59–68.
  • Hochstrasser, M. 2000. Evolution and function of ubiquitin-like protein-conjugation systems. Nat. Cell Biol. 2: E153–157.
  • Kawakami, T., T. Chiba, T. Suzuki, et al. 2001. NEDD8 recruits E2-ubiquitin to SCF E3 ligase. EMBO J. 20: 4003–4012.
  • Kwok, S. F., R. Solano, T. Tsuge, D. Chamovitz, J. R. Ecker, M. Matsui, and X.-W. Deng. 1998. Arabidopsis homologs of a c-Jun coactivator are present both in monomeric form and in the COP9 complex, and their abundance is differentially affected by the pleiotropic cop/det/fus mutations. Plant Cell 10: 1779–1790.
  • Lee, J. W., H.-S. Choi, J. Gyuris, R. Brent, and D. D. Moore. 1995. Two classes of protein dependent on either the presence or absence of thyroid hormone for interaction with the thyroid hormone receptor. Mol. Endocrinol. 9: 243–253.
  • Liu, J., M. Furukawa, T. Matsumoto, and Y. Xiong. 2002. NEDD8 Modification of CUL1 Dissociates p120 (CAND1), an Inhibitor of CUL1-SKP1 Binding and SCF Ligases. Mol. Cell 10: 1511–1518.
  • Lyapina, S., G. Cope, A. Shevchenko, G. Serino, T. Tsuge, C. Zhou, D. A. Wolf, N. Wei, A. Shevchenko, and R. J. Deshaies. 2001. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292: 1382–1385.
  • Maytal-Kivity, V., R. Piran, E. Pick, K. Hofmann, and M. H. Glickman. 2002. COP9 signalosome components play a role in the mating pheromone response of S. cerevisiae. EMBO Rep. 3: 1215–1221.
  • Morimoto, M., T. Nishida, R. Honda, and H. Yasuda. 2000. Modification of cullin-1 by ubiquitin-like protein Nedd8 enhances the activity of SCF(skp2) toward p27(kip1). Biochem. Biophys. Res. Commun. 270: 1093–1096.
  • Morimoto, M., T. Nishida, Y. Nagayama, and H. Yasuda. 2003. Nedd8-modification of Cul1 is promoted by Roc1 as a Nedd8-E3 ligase and regulates its stability. Biochem. Biophys. Res. Commun. 301: 392–398.
  • Mundt, K. E., J. Porte, J. M. Murray, et al. 1999. The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Curr. Biol. 9: 1427–1430.
  • Naumann, M., D. Bech-Otschir, X. Huang, K. Ferrell, and W. Dubiel. 1999. COP9 signalosome-directed c-Jun activation/stabilization is independent of JNK. J. Biol. Chem. 274: 35297–35300.
  • Nichols, J., B. Zevnik, K. Anastassiadis, H. Niwa, D. Klewe-Nebenius, I. Chambers, H. Scholer, and A. Smith. 1998. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379–391.
  • Niwa, H., J. Miyazaki, and A. G. Smith. 2000. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat. Genet. 24: 372–376.
  • Oron, E., M. Mannervik, S. Rencus, Harari- O. Steinberg, S. Neuman-Silberberg, D. Segal, and D. A. Chamovitz. 2002. COP9 signalosome subunits 4 and 5 regulate multiple pleiotropic pathways in Drosophila melanogaster. Development 129: 4399–4409.
  • Podust, V. N., J. E. Brownell, T. B. Gladysheva, R. S. Luo, C. Wang, M. B. Coggins, J. W. Pierce, E. S. Lightcap, and V. Chau. 2000. Nedd8 conjugation pathway is essential for proteolytic targeting of p27Kip1 by ubiquitination. Proc. Natl. Acad. Sci. USA 97: 4579–4584.
  • Read, M. A., J. E. Brownell, T. B. Gladysheva, M. Hottelet, L. A. Parent, M. B. Coggins, J. W. Pierce, V. N. Podust, R. S. Luo, V. Chau, and V. J. Palombella. 2000. Nedd8 modification of cul-1 activates SCF(beta(TrCP))-dependent ubiquitination of IkappaBalpha. Mol. Cell. Biol. 20: 2326–2333.
  • Roninson, I. B. 2002. Oncogenic functions of tumour suppressor p21(Waf1/Cip1/Sdi1): association with cell senescence and tumour-promoting activities of stromal fibroblasts. Cancer Lett. 179: 1–14.
  • Schaefer, L., M. L. Beermann, and J. B. Miller. 1999. Coding sequence, genomic organization, chromosomal localization, and expression pattern of the signalosome component Cops2: the mouse homologue of Drosophila alien. Genomics 56: 310–316.
  • Schwechheimer, C., G. Serino, J. Callis, W. L. Crosby, S. Lyapina, R. J. Deshaies, W. M. Gray, M. Estelle, and X. W. Deng. 2001. Interactions of the COP9 signalosome with the E3 ubiquitin ligase SCFTIRI in mediating auxin response. Science 292: 1379–1382.
  • Seeger, M., R. Kraft, K. Ferrell, D. Bech-Otschir, R. Dumdey, R. Schade, C. Gordon, M. Naumann, and W. Dubiel. 1998. A novel protein complex involved in signal transduction possessing similarities to the 26S proteasome subunits. FASEB J. 12: 469–478.
  • Serino, G., H. Su, Z. Peng, T. Tsuge, N. Wei, H. Gu, and X. W. Deng. 2003. Characterization of the last subunit of the arabidopsis cOP9 signalosome: implications for the overall structure and origin of the complex. Plant Cell 15: 719–731.
  • Singer, J. D., M. Gurian-West, B. Clurman, and J. M. Roberts. 1999. Cullin-3 targets cyclin E for ubiquitination and controls S phase in mammalian cells. Genes Dev. 13: 2375–2387.
  • Suh, G. S., B. Poeck, T. Chouard, E. Oron, D. Segal, D. A. Chamovitz, and S. L. Zipursky. 2002. Drosophila JAB1/CSN5 acts in photoreceptor cells to induce glial cells. Neuron 33: 35–46.
  • Sun, Y., M. P. Wilson, and P. W. Majerus. 2002. Inositol 1,3,4-trisphosphate 5/6-kinase associates with the COP9 signalosome by binding to CSN1. J. Biol. Chem. 277: 45759–457564.
  • Tateishi, K., M. Omata, K. Tanaka, and T. Chiba. 2001. The NEDD8 system is essential for cell cycle progression and morphogenetic pathway in mice. J. Cell Biol. 155: 571–579.
  • Wang, X., D. Kang, S. Feng, G. Serino, C. Schwechheimer, and N. Wei. 2002. CSN1 N-terminal-dependent activity is required for Arabidopsis development but not for Rub1/Nedd8 deconjugation of cullins: a structure-function study of CSN1 subunit of COP9 signalosome. Mol. Biol. Cell 13: 646–655.
  • Wang, X., S. Feng, N. Nakayama, W. L. Crosby, V. F. Irish, X.-W. Deng, and N. Wei. 2003. The COP9 signalosome interacts with SCFUFO and participates in Arabidopsis flower development. Plant Cell 15: 1071–1082.
  • Wang, Y., S. Penfold, X. Tang, N. Hattori, P. Riley, J. W. Harper, J. C. Cross, and M. Tyers. 1999. Deletion of the Cul1 gene in mice causes arrest in early embryogenesis and accumulation of cyclin E. Curr. Biol. 9: 1191–1194.
  • Wei, N., D. A. Chamovitz, and X.-W. Deng. 1994. Arabidopsis COP9 is a component of a novel signaling complex mediating light control of development. Cell 78: 117–124.
  • Wei, N., T. Tsuge, G. Serino, N. Dohmae, K. Takio, M. Matsui, and X.-W. Deng. 1998. The COP9 complex is conserved between plants and mammals and is related to the 26S proteasome regulatory complex. Curr. Biol. 8: 919–922.
  • Wirbelauer, C., H. Sutterluty, M. Blondel, M. Gstaiger, M. Peter, F. Raymond, and W. Krek. 2000. The F-box protein Skp2 is a ubiquitylation target of a Cul1-based core ubiquitin ligase complex: evidence for a role of Cul1 in the suppression of Skp2 expression in quiescent fibroblasts. EMBO J. 19: 5362–5375.
  • Wu, K., A. Chen, and Z. Q. Pan. 2000. Conjugation of Nedd8 to CUL1 enhances the ability of the ROC1-CUL1 complex to promote ubiquitin polymerization. J. Biol. Chem. 275: 32317–32324.
  • Yang, X., S. Menon, K. Lykke-Andersen, T. Tsuge, D. Xiao, X. Wang, R. J. Rodriguez-Suarez, R. J., H. Zhang, and N. Wei. 2002. The COP9 Signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr. Biol. 12: 667–672.
  • Zheng, J., X. Yang, J. M. Harrell, S. Ryzhikov, E. H. Shim, K. Lykke-Andersen, N. Wei, H. Sun, R. Kobayashi, and H. Zhang. 2002. CAND1 binds to unneddylated CUL1 and regulates the formation of sCF Ubiquitin E3 ligase complex. Mol. Cell 10: 1519–1526.
  • Zhou, C., V. Seibert, R. Geyer, E. Rhee, S. Lyapina, G. Cope, R. J. Deshaies, and D. A. Wolf. 2001. The fission yeast COP9/signalosome is involved in cullin modification by ubiquitin-related Ned8p. BMC Biochem. 2: 7–16.
  • Zhou, P., and P. M. Howley. 1998. Ubiquitination and degradation of the substrate recognition subunits of SCF ubiquitin-protein ligases. Mol. Cell 2: 571–580.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.