4,353
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Purification and identification of a novel antidiabetic peptide from Chinese giant salamander (Andrias davidianus) protein hydrolysate against α-amylase and α-glucosidase

, , , , &
Pages S3360-S3372 | Received 21 Mar 2017, Accepted 10 Jul 2017, Published online: 21 Feb 2018

References

  • Gondi, M.; Basha, S. A.; Bhaskar, J. J.; Salimath, P. V.; Rao, U. J. Anti-Diabetic Effect of Dietary Mango (Mangifera Indica L.) Peel in Streptozotocin-Induced Diabetic Rats. J. Sci. Food Agr. 2015, 95, 991–999. DOI: 10.1002/jsfa.6778.
  • Zhang, Y.; Chen, R.; Chen, X.; Zeng, Z.; Ma, H.; Chen, S. Dipeptidyl Peptidase IV-Inhibitory Peptides Derived from Silver Carp (Hypophthalmichthys Molitrix Val.) Proteins. J. Agric. Food Chem. 2016, 64, 831–839. DOI: 10.1021/acs.jafc.5b05429.
  • Widharna, R. M.; Soemardji, A. A.; Wirasutisna, K. R.; Kardono, L. B. S. Anti Diabetes Mellitus Activity in Vivo of Ethanolic Extract and Ethyl Acetate Fraction of Euphorbia Hirta L. Herb. Int J Immunopathol Pharmacol. 2010, 6, 231–240. DOI: 10.3923/ijp.2010.231.240.
  • Bhandari, M. R.; Jong-Anurakkun, N.; Hong, G.; Kawabata, J. Α-Glucosidase and Α-Amylase Inhibitory Activities of Nepalese Medicinal Herb Pakhanbhed (Bergenia Ciliata, Haw.). Food Chem. 2008, 106, 247–252. DOI: 10.1016/j.foodchem.2007.05.077.
  • Makkar, F.; Chakraborty, K. Antidiabetic and Anti-Inflammatory Potential of Sulphated Polygalactans from Red Seaweeds Kappaphycus Alvarezii and Gracilaria Opuntia. Int J Food Prop. 2016, 20, 1326–1337. DOI: 10.1080/10942912.2016.1209216.
  • Yu, Z. P.; Yin, Y. G.; Zhao, W. Z.; Yu, Y. D.; Liu, B. Q.; Liu, J. B.; Chen, F. Novel Peptides Derived from Egg White Protein Inhibiting Alpha-Glucosidase. Food Chem. 2011, 129, 1376–1382. DOI: 10.1016/j.foodchem.2011.05.067.
  • Cui, J.; Gu, X.; Wang, F.; Ouyang, J.; Wang, J. Purification and Structural Characterization of an Alpha-Glucosidase Inhibitory Polysaccharide from Apricot (Armeniaca Sibirica L. Lam.) Pulp. Carbohydr Polym. 2015, 121, 309–314. DOI: 10.1016/j.carbpol.2014.12.065.
  • Yang, W.; Liu, J.; Shan, Z.; Tian, H.; Zhou, Z.; Ji, Q.; Weng, J.; Jia, W.; Lu, J.; Liu, J.; Xu, Y.; Yang, Z.; Chen, W. Acarbose Compared with Metformin as Initial Therapy in Patients with Newly Diagnosed Type 2 Diabetes: An Open-Label, Non-Inferiority Randomised Trial. Lancet Diabetes Endocrinol. 2014, 2, 46–55. DOI: 10.1016/S2213-8587(13)70021-4.
  • van Loon, L. J.; Kruijshoop, M.; Menheere, P. P.; Wagenmakers, A. J.; Saris, W. H.; Keizer, H. A. Amino Acid Ingestion Strongly Enhances Insulin Secretion in Patients with Long-Term Type 2 Diabetes. Diabetes Care. 2003, 26, 625–630. DOI: 10.2337/diacare.26.3.625.
  • Ryan, J. T.; Ross, R. P.; Bolton, D.; Fitzgerald, G. F.; Stanton, C. Bioactive Peptides from Muscle Sources: Meat and Fish. Nutrients. 2011, 3, 765–791. DOI: 10.3390/nu3090765.
  • Rutherfurd-Markwick, K. J.;. Food Proteins as a Source of Bioactive Peptides with Diverse Functions. Br. J. Nutr. 2012, 108(Suppl 2), S149–57. DOI: 10.1017/S000711451200253X.
  • Jin, D. X.; Liu, X. L.; Zheng, X. Q.; Wang, X. J.; He, J. F. Preparation of Antioxidative Corn Protein Hydrolysates, Purification and Evaluation of Three Novel Corn Antioxidant Peptides. Food Chem. 2016, 204, 427–436. DOI: 10.1016/j.foodchem.2016.02.119.
  • Singh, B.; Kaur, A. Antidiabetic Potential of a Peptide Isolated from an Endophytic Aspergillus Awamori. J Appl Microbiol. 2016, 120, 301–311. DOI: 10.1111/jam.12998.
  • Nourmohammadi, E.; SadeghiMahoonak, A.; Alami, M.; Ghorbani, M. Amino Acid Composition and Antioxidative Properties of Hydrolysed Pumpkin (Cucurbita Pepo L.) Oil Cake Protein. Int J Food Prop. 2017, 1–12. DOI: 10.1080/10942912.2017.1283516.
  • Vieira, E. F.; Ferreira, I. M. P. L. V. O. Antioxidant and Antihypertensive Hydrolysates Obtained from By-Products of Cannery Sardine and Brewing Industries. International. J Food Prop. 2016, 20, 662–673. DOI: 10.1080/10942912.2016.1176036.
  • Huang, Y.-L.; Ma, M.-F.; Chow, C.-J.; Tsai, Y.-H. Angiotensin I-Converting Enzyme Inhibitory and Hypocholesterolemic Activities: Effects of Protein Hydrolysates Prepared from Achatina Fulica Snail Foot Muscle. Int J Food Prop. 2017, 1–10. DOI: 10.1080/10942912.2016.1274904.
  • Patil, P.; Mandal, S.; Tomar, S. K.; Anand, S. Food Protein-Derived Bioactive Peptides in Management of Type 2 Diabetes. European. J. Nutr. 2015, 54, 863–880.
  • Matsui, T.; Oki, T.; Osajima, Y. Isolation and Identification of Peptidic a-Glucosidase Inhibitors Derived from Sardine Muscle Hydrolyzate. Z. Naturforsch. C Bio. Sci. 1999, 54, 259–263.
  • Matsui, T.; Yoshimoto, C.; Osajima, K.; Oki, T.; Osajima, Y. In VitroSurvey ofα-Glucosidase Inhibitory Food Components. Biosci. Biotechnol. Biochem. 2014, 60, 2019–2022. DOI: 10.1271/bbb.60.2019.
  • Huang, F. J.; Wu, T. Purification and Characterization of a New Peptide (S-8300) from Shark Liver. J. Food Biochem. 2010, 34, 962–970. DOI: 10.1111/j.1745-4514.2010.00336.x.
  • Li-Chan, E. C. Y.; Hunag, S. L.; Jao, C. L.; Ho, K. P.; Hsu, K. C. Peptides Derived from Atlantic Salmon Skin Gelatin as Dipeptidyl-Peptidase IV Inhibitors. J. Agric. Food Chem.. 2012, 60, 973–978. DOI: 10.1021/jf204720q.
  • Zhang, Y.; Wang, N.; Wang, W.; Wang, J.; Zhu, Z.; Li, X. Molecular Mechanisms of Novel Peptides from Silkworm Pupae that Inhibit Alpha-Glucosidase. Peptides. 2016, 76, 45–50. DOI: 10.1016/j.peptides.2015.12.004.
  • Lee, H. J.; Lee, H. S.; Choi, J. W.; Ra, K. S.; Kim, J. M.; Suh, H. J. Novel Tripeptides with Alpha-Glucosidase Inhibitory Activity Isolated from Silk Cocoon Hydrolysate. J. Agric. Food Chem. 2011, 59, 11522–11525. DOI: 10.1021/jf202686m.
  • Yu, Z.; Yin, Y.; Zhao, W.; Liu, J.; Chen, F. Anti-Diabetic Activity Peptides from Albumin against Alpha-Glucosidase and Alpha-Amylase. Food Chem. 2012, 135, 2078–2085. DOI: 10.1016/j.foodchem.2012.06.088.
  • Zambrowicz, A.; Timmer, M.; Polanowski, A.; Lubec, G.; Trziszka, T. Manufacturing of Peptides Exhibiting Biological Activity. Amino Acids. 2013, 44, 315–320. DOI: 10.1007/s00726-012-1379-7.
  • Zambrowicz, A.; Pokora, M.; Setner, B.; Dabrowska, A.; Szoltysik, M.; Babij, K.; Szewczuk, Z.; Trziszka, T.; Lubec, G.; Chrzanowska, J. Multifunctional Peptides Derived from an Egg Yolk Protein Hydrolysate: Isolation and Characterization. Amino Acids. 2015, 47, 369–380. DOI: 10.1007/s00726-014-1869-x.
  • Wang, H.; Du, Y.-J.; Song, H.-C. Α-Glucosidase and Α-Amylase Inhibitory Activities of Guava Leaves. Food Chem. 2010, 123, 6–13. DOI: 10.1016/j.foodchem.2010.03.088.
  • Zheng, X. K.; Zhang, L.; Wang, W. W.; Wu, Y. Y.; Zhang, Q. B.; Feng, W. S. Anti-Diabetic Activity and Potential Mechanism of Total Flavonoids of Selaginella Tamariscina (Beauv.) Spring in Rats Induced by High Fat Diet and Low Dose STZ. Journal of Ethnopharmacology. 2011, 137, 662–668. DOI: 10.1016/j.jep.2011.06.018.
  • de Azevedo Pereira, R.; Nogueira Batista, J. A.; da Silva, M. C.; Brilhante de Oliveira Neto, O.; Zangrando Figueira, E. L.; Valencia Jimenez, A.; Grossi-de-sa, M. F. An Alpha-Amylase Inhibitor Gene from Phaseolus Coccineus Encodes a Protein with Potential for Control of Coffee Berry Borer (Hypothenemus Hampei). Phytochemistry. 2006, 67, 2009–2016. DOI: 10.1016/j.phytochem.2006.06.029.
  • Adler-Nissen, J.;. Determination of the Degree of Hydrolysis of Food Protein Hydrolysates by Trinitrobenzenesulfonic Acid. J. Agric. Food Chem. 1979, 27, 1256–1262. DOI: 10.1021/jf60226a042.
  • Taylor, W. H.;. Formol Titration: An Evaluation of Its Various Modifications. Analyst. 1957, 82, 488–498. DOI: 10.1039/an9578200488.
  • Sampath Kumar, N. S.; Nazeer, R. A.; Jaiganesh, R. Purification and Identification of Antioxidant Peptides from the Skin Protein Hydrolysate of Two Marine Fishes, Horse Mackerel (Magalaspis Cordyla) and Croaker (Otolithes Ruber). Amino Acids. 2012, 42, 1641–1649. DOI: 10.1007/s00726-011-0858-6.
  • Tahir, H. U.; Sarfraz, R. A.; Ashraf, A.; Adil, S. Chemical Composition and Antidiabetic Activity of Essential Oils Obtained from Two Spices Syzygium Aromaticum and Cuminum Cyminum. Int J Food Propert. 2016, 19, 2156–2164. DOI: 10.1080/10942912.2015.1110166.
  • Wan, L. S.; Chen, C. P.; Xiao, Z. Q.; Wang, Y. L.; Min, Q. X.; Yue, Y.; Chen, J. In Vitro and in Vivo Anti-Diabetic Activity of Swertia Kouitchensis Extract. J. Ethnopharmacol. 2013, 147, 622–630. DOI: 10.1016/j.jep.2013.03.052.
  • Bahadori, M. B.; Dinparast, L.; Zengin, G.; Sarikurkcu, C.; Bahadori, S.; Asghari, B.; Movahhedin, N. Functional Components, Antidiabetic, anti-Alzheimer’s Disease, and Antioxidant Activities of Salvia Syriaca L. Int. J Food Proper. 2016, 1–12. DOI: 10.1080/10942912.2016.1263862.
  • Ye, X.-P.; Song, C.-Q.; Yuan, P.; Mao, R.-G. Α-Glucosidase and Α-Amylase Inhibitory Activity of Common Constituents from Traditional Chinese Medicine Used for Diabetes Mellitus. CJNM. 2010, 8, 349–352. DOI: 10.1016/S1875-5364(10)60041-6.
  • Mokni Ghribi, A.; Maklouf Gafsi, I.; Sila, A.; Blecker, C.; Danthine, S.; Attia, H.; Bougatef, A.; Besbes, S. Effects of Enzymatic Hydrolysis on Conformational and Functional Properties of Chickpea Protein Isolate. Food Chem. 2015, 187, 322–330. DOI: 10.1016/j.foodchem.2015.04.109.
  • Newsholme, P.; Brennan, L.; Bender, K. Amino Acid Metabolism, Beta-Cell Function, and Diabetes. Diabetes. 2006, 55, S39–S47. DOI: 10.2337/db06-S006.
  • Salil, G.; Nevin, K. G.; Rajamohan, T. Arginine-Rich Coconut Kernel Diet Influences Nitric Oxide Synthase Activity in Alloxandiabetic Rats. J. Sci. Food. Agr. 2012, 92, 1903–1908. DOI: 10.1002/jsfa.5558.
  • Dixon, G.; Nolan, J.; McClenaghan, N.; Flatt, P. R.; Newsholme, P. A Comparative Study of Amino Acid Consumption by Rat Islet Cells and the Clonal Beta-Cell Line BRIN-BD11 - the Functional Significance of L-Alanine. J Endocrinol. 2003, 179, 447–454. DOI: 10.1677/joe.0.1790447.
  • Kimball, S. R.; Farrell, P. A.; Jefferson, L. S. Exercise Effects on Muscle Insulin Signaling and Action - Invited Review: Role of Insulin in Translational Control of Protein Synthesis in Skeletal Muscle by Amino Acids or Exercise. J. Appl. Physiol. 2002, 93, 1168–1180. DOI: 10.1152/japplphysiol.00221.2002.
  • Matsui, T.; Oki, T.; Osajima, K. Isolation and Identification of Peptidic a-Glucosidase Inhibitors Derived from Sardine Muscle Hydrolyzate. Z. Naturforsch. C Bio. Sci. 1999, 54, 259–263.
  • Oseguera-Toledo, M. E.; De Mejia, E. G.; Amaya-Llano, S. L. Hard-To-Cook Bean (Phaseolus Vulgaris L.) Proteins Hydrolyzed by Alcalase and Bromelain Produced Bioactive Peptide Fractions that Inhibit Targets of Type-2 Diabetes and Oxidative Stress. Food. Res. Int. 2015, 76, 839–851. DOI: 10.1016/j.foodres.2015.07.046.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.