2,377
Views
20
CrossRef citations to date
0
Altmetric
Article

The impact of ozone on health-promoting, microbiological, and colour properties of Rubus ideaus raspberries

Impacto del ozono en las propiedades promotoras de la salud, microbiológicas y de color de la frambuesa Rubus ideaus

, , , &
Pages 563-573 | Received 19 Nov 2016, Accepted 03 Apr 2017, Published online: 13 Jun 2017

References

  • Abdel-Wahhab, M.A., Sehab, A.F., Hassanien, F.R., El-Nemr, Sh., E., Amra, H.A., & Abdel-Alim, H.A. (2011). Efficacy of ozone to reduce fungal spoilage and aflatoxin contamination in peanuts. Journal of Nuts and Related Sciences, 2, 01–14.
  • Ali, A., Ong, M.K., & Forney, C.F. (2014). Effect of ozone pre-conditioning on quality and antioxidant capacity of papaya fruit during ambient storage. Food Chemistry, 142, 19–26. doi:10.1016/j.foodchem.2013.07.039
  • Ali, L., Svensson, B., Alsanius, B.W., & Olsson, M.E. (2011). Late season harvest and storage of Rubus berries–Major antioxidant and sugar levels. Scientia Horticulturae, 129, 376–381. doi:10.1016/j.scienta.2011.03.047
  • Alothman, M., Kaur, B., Fazilah, A., Bhat, R., & Karim, A.A. (2010). Ozoned-inducedchanges of antioxidant of fresh-cut tropical fruits. Innovative Food Science and Emerging Technologies, 11, 666–671. doi:10.1016/j.ifset.2010.08.008
  • Analia, B., Loredo, G., Guerrero, S.N., & Alzamora, S.M. (2015). Inactivation kinetics and growth dynamics during cold storage of Escherichia coli ATCC 11229, Listeria innocua ATCC 33090 and Saccharomyces cerevisiae KE162 in peach juice using aqueous ozone. Innovative Food Science and Emerging Technologies, 29, 271–279. doi:10.1016/j.ifset.2015.02.007
  • Anttonen, M.J., & Karjalainen, R.O. (2005). Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis, 18, 759–769. doi:10.1016/j.jfca.2004.11.003
  • AOAC. (2000). Official methods of analysis (17th). Gaithersburg, DS: Association of Official Analytical Chemists. p. 27.
  • Balawejder, M., Szpyrka, E., Antos, P., Józefczyk, R., Piechowicz, B., & Sadło, S. (2014). Method for reduction of pesticide residue levels in raspberry and blackcurrant based on utilization of ozone. Environmental Protection and Natural Resources, 25, 1–5. doi:10.2478/oszn-2014-0018
  • Benvenuti, S., Pellati, F., Malegari, M., & Bertelli, D. (2004). Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of rubus, ribes, and aronia. Journal of Food Science, 69, 164–169. doi:10.1111/j.1365-2621.2004.tb13352.x
  • Bobinaitė, R., Viškelis, P., & Venskutonis, P.R. (2012). Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry, 132, 1495–1501. doi:10.1016/j.foodchem.2011.11.137
  • Bobinaitė, R., Viškelis, P., & Venskutonis, P.R. (2016). Chapter 29 – Chemical composition of Raspberry (Rubus spp.) cultivars (pp. 713–731). Nutritional Composition of Fruit Cultivars. London: Academic Press.
  • Carvalho, E., Franceschi, P., Feller, A., Palmieri, L., Wehrens, R., & Martens, S. (2013). A targeted metabolomics approach to understand differences in flavonoid biosynthesis in red and yellow raspberries. Plant Physiology and Biochemistry, 72, 79–86. doi:10.1016/j.plaphy.2013.04.001
  • Chen, L., Xin, X., Zhang, H., & Yuan, Q. (2015). Phytochemical properties and antioxidant capacities of commercial raspberry varieties. Journal of Functional Foods, 5, 508–515. doi:10.1016/j.jff.2012.10.009
  • Cheplick, S., Kwon, Y., Bhowmik, P., & Shetty, K. (2007). Clonal variation in raspberry fruit phenolics and relevance for diabetes and hypertension management. Journal of Food Biochemistry, 31, 656–679. doi:10.1111/j.1745-4514.2007.00136.x
  • De Souza, V.R., Pereira, P.A., Da Silva, T.L., De Oliveira Lima, L.C., Pio, R., & Queiroz, F. (2014). Determination of the bioactive compounds, antioxidant activity and chemical composition of Brazilian blackberry, red raspberry, strawberry, blueberry and sweet cherry fruits. Food Chemistry, 156, 362–368. doi:10.1016/j.foodchem.2014.01.125
  • Del Rio, D., Rodriguez-Mateos, A., Spencer, J.P.E., Tognolini, M., Borges, G., & Crozier, A. (2013). Dietary (Poly)phenolics in human health: Structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxidants & Redox Signaling, 18, 1818–1892. doi:10.1089/ars.2012.4581
  • Dragišić Maksimović, J.J., Milivojević, J.M., Poledica, M.M., Nikolić, M.D., & Maksimović, V.M. (2013). Profiling antioxidant activity of two primocane fruiting red raspberry cultivars (Autumn bliss and Polka). Journal of Food Composition and Analysis, 31, 173–179. doi:10.1016/j.jfca.2013.05.008
  • Echeverria, E., & Valich, J. (1989). Enzymes of sugar and acid metabolism in stored ‘valencia’ oranges. Journal of the American Society for Horticultural Science, 114, 445–449.
  • EPA. (1999). United States Environmental Protection Agency. Alternative Disinfectants and Oxidants Guidance Manual, 815, R 99014.
  • Flores, G., & Ruiz Del Castillo, M.L. (2014). Influence of preharvest and postharvest methyl jasmonate treatmentson flavonoid content and metabolomic enzymes in red raspberry. Postharvest Biology and Technology, 97, 77–82. doi:10.1016/j.postharvbio.2014.06.009
  • Giampieri, F., Forbes-Hernandez, T.Y., Gasparrini, M., Alvarez-Suarez, J.M., Afrin, S., Bompadre, S., … Battino, M. (2015). Strawberry as a health promoter: An evidence based review. Food & Function, 6, 1386–1398. doi:10.1039/C5FO00147a
  • Giovanelli, G., Limbo, S., & Buratti, S. (2014). Effects of new packaging solutions on physico-chemical, nutritionaland aromatic characteristics of red raspberries (Rubus idaeus L.) inpostharvest storage. Postharvest Biology and Technology., 98, 72–81. doi:10.1016/j.postharvbio.2014.07.002
  • Giuggioli, N., Briano, R., Girgenti, V., & Peano, C. (2015). Quality effect of ozone treatment for the red raspberries storage. Chemical Engineering Transactions, 44, 25–30. doi:10.3303/CET1544005
  • Guerreiro, A.C., Gago, C.M.L., Miguel, M.G.C., Faleiro, M.L., & Antunes, M.D.C. (2016). The influence of edible coatings enriched with citral and eugenol on the raspberry storage ability, nutritional and sensory quality. Food Packaging and Shelf Life, 9, 20–28. doi:10.1016/j.fpsl.2016.05.004
  • Haffner, K., Rosenfeld, H.J., Skrede, G., & Wang, L. (2002). Quality of red raspberry Rubus idaeus L. cultivars after storage in controlled and normal atmospheres. Postharvest Biology and Technology, 24, 279–289. doi:10.1016/S0925-5214(01)00147-8
  • Hassani, S., Shariatpanahi, M., Tavakoli, F., Nili-Ahmadabadi, A., & Abdollahi, M. (2015). The changes of bioactive ingredients and antioxidant properties in various berries during jam processing. International Journal of Biosciences, 6, 172–179. doi:10.12692/ijb/6.2.172-179
  • Hoigné, J., & Bader, H. (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water. I: Non-dissociating organic compounds. Water Research, 17, 173−183. doi:10.1016/0043-1354(83)90098-2
  • Li, Y., & Wu, C. (2013). Enhanced removal of Salmonella Typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide. Food Research Intrernational, 54, 1553–1559. doi:10.1016/j.foodres.2013.09.012
  • Ludwig, I.A., Mena, P., Calani, L., Borges, G., Pereira-Caro, G., Bresciani, L., … Crozier, A. (2015). New insights into the bioavailability of red raspberry anthocyanins and ellagitannins. Free Radical Biology and Medicine, 89, 758–769. doi:10.1016/j.freeradbiomed.2015.10.400
  • Mazur, S.P., Nes, A., Wold, A.B., Remberg, S.F., & Aaby, K. (2014). Quality and chemical composition of ten red raspberry (Rubus idaeus L.) genotypes during three harvest seasons. Food Chemistry, 160, 233–240. doi:10.1016/j.foodchem.2014.02.174
  • Miret, J.A., & Munné-Bosch, S. (2016). Abscisic acid and pyrabactin improve vitamin C contents in raspberries. Food Chemistry, 203, 216–223. doi:10.1016/j.foodchem.2016.02.046
  • Monaco, K.A., Costa, S., Uliana, M., & Lima, G. (2014). Sanitizers effect in mango pulp and peel antioxidant compounds. Food and Nutrition Sciences, 5, 929–935. doi:10.4236/fns.2014.510103
  • Mullen, W., McGinn, J., Lean, M.E.J., MacLean, M.R., Gardner, P., Duthie, G.G., & Crozier, A. (2002). Ellagitannins, flavonoids, and other phenolics in red raspberries and their contribution to antioxidant capacity and vasorelaxation properties. Journal of Agricultural and Food Chemistry, 50, 5191–5196. doi:10.1021/jf020140n
  • Onopiuk, A., Półtorak, A., Wyrwisz, J., Moczkowska, M., Stelmasiak, A., Lipińska, A., … Wierzbicka, A. (2016). Impact of ozonisation on pro-health properties and antioxidant capacity of ‘Honeoye’ strawberry fruit. Cyta - Journal of Food, 1–7. doi:10.1080/19476337.2016.1212273
  • Paissoni, M.A., Segade, S.R., Giacosa, S., Torchio, F., Cravero, F., Englezos, V., … Luca Roll, L. (2016). Impact of post-harvest ozone treatments on the skin phenolic extractability of red winegrapes cv Barbera and Nebbiolo (Vitis vinifera L.). Food Research International. doi:10.1016/j.foodres.2016.11.013
  • Paredes-López, O., Cervantes-Ceja, M.L., Vigna-Pérez, M., & Hernández-Pérez, T. (2010). Berries: Improving human health and healthy aging, and promoting quality life- a review. Plant Foods for Human Nutrition, 65, 299–308. doi:10.1007/s11130-010-0177-1
  • Perez, A.G., Sanz, C., Rios, J.J., Olias, R., & Olias, J.M. (1999). Effects of ozone treatment on postharvest strawberry quality. Journal of Agricultural and Food Chemistry, 47, 1652–1656. doi:10.1021/jf980829l
  • Priyanka, B.S., Rastogi, N.K., & Tiwari, B.K. (2014). Opportunities and challenges in the application of ozone in food processing. Emerging Technologies for Food Processing (Second Edition), 19, 335–358. doi:10.1016/B978-0-12-411479-1.00019-X
  • Rao, A.V., & Snyder, D.M. (2010). Raspberries and human health: A review. Journal of Agricultural and Food Chemistry, 58, 3872–3883. doi:10.1021/jf903484g
  • Rodoni, L., Casadei, N., Concellón, A., Chaves Alicia, A.R., & Vicente, A.R. (2010). Effect of short-term ozone treatments on tomato (Solanum lycopersicum L.) fruit quality and cell wall degradation. Journal of Agricultural and Food Chemistry, 58, 594–599. doi:10.1021/jf9029145
  • Sachadyn-Król, M., Materska, M., Chilczuk, B., Karaś, M., Jakubczyk, A., Perucka, I., & Jackowska, I. (2016). Ozone-induced changes in the content of bioactive compounds and enzyme activity during storage of pepper fruits. Food Chemistry, 211, 59–67. doi:10.1016/j.foodchem.2016.05.023
  • Singleton, V.L., & Rossi, J.A. (1965). Colorimetry of total phenolics with phosphomolybdic and phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16, 144–147.
  • Skrovankova, S., Sumczynski, D., Mlcek, J., Jurikova, T., & Sochor, J. (2015). Bioactive compounds and antioxidant activity in different types of berries. International Journal of Molecular Sciences, 16, 24673–24706. doi:10.3390/ijms161024673
  • Sogvar, O.B., Saba, M.K., & Emamifar, A. (2016). Aloe vera and ascorbic acid coatings maintain postharvest quality and reduce microbial load of strawberry fruit. Postharvest Biology and Technology, 114, 29–35. doi:10.1016/j.postharvbio.2015.11.019
  • Stavang, J.A., Freitag, S., Foito, A., Verrall, S., Heide, O.M., Stewart, D., & Sønsteby, A. (2015). Raspberry fruit quality changes during ripening and storage as assessed by colour, sensory evaluation and chemical analyses. Scientia Horticulturae, 195, 216–225. doi:10.1016/j.scienta.2015.08.045
  • Tiwari, B.K., O’ Donnell, C.P., Brunton, N.P., & Cullen, P.J. (2009). Degradation kinetics of tomato juice quality parameters by ozonation. International Journal of Food Science and Technology, 44, 1199–1205. doi:10.1111/j.1365-2621.2009.01946.x
  • Tzortzakis, N., Borland, A., Singleton, I., & Barnes, J. (2007). Impact of atmospheric ozone-enrichment on quality-related attributes of tomato fruit. Postharvest Biology and Technology, 45, 317–325. doi:10.1016/j.postharvbio.2007.03.004
  • Van Der Steen, C., Jacxsens, L., Devlieghere, F., & Debevere, J. (2002). Combining high oxygen atmospheres with low oxygen modified atmosphere packaging to improve the keeping quality of strawberries and raspberries. Postharvest Biology and Technology, 26, 49–58. doi:10.1016/S0925-5214(02)00005-4
  • Villamor, R.R., Daniels, C.H., Moore, P.P., & Ross, C.F. (2013). Preference mapping of Frozen and fresh raspberries. Journal of Food Science, 78, 911–919. doi:10.1111/1750-3841.12125
  • Wang, S.Y., & Jiao, H.J. (2000). Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agriculural and Food Chemistry, 48, 5677–5684. doi:10.1021/jf000766i
  • Williamson, B., McNicol, R.J., & Dolan, A. (1987). The effect of inoculating flowers and developing fruits with Botrytis cinerea on post-harvest grey mould of red raspberry. Annals of Applied Biology, 111, 285–294. doi:10.1111/aab.1987.111.issue-2
  • Xu, W., & Wu, C. (2016). The impact of pulsed light on decontamination, quality, and bacterial attachment of fresh raspberries. Food Microbiology, 57, 135–143. doi:10.1016/j.fm.2016.02.009
  • Yeoh, W.K., Ali, A., & Forney, C.F. (2014). Effects of ozone on major antioxidants and microbial populations offresh-cut papaya. Postharvest Biology and Technology, 89, 56–58. doi:10.1016/j.postharvbio.2013.11.006
  • Zhang, X., Zhang, Z., Wang, L., & Zhao, J. (2011). Impact of ozone on quality of strawberry during cold storage. Agricultural Sciences in China, 5, 356–360. doi:10.1007/s11703-011-1053-y
  • Zoriţa, D., Florica, R., Rugină, D., Lucian, C., & Socaciu, C. (2014). HPLC/PDA–ESI/MS identification of phenolic acids, flavonol glycosides and antioxidant potential in blueberry, blackberry, raspberries and cranberries. Journal of Food and Nutrition Research, 2, 781–785. doi:10.12691/jfnr-2-11-4