2,695
Views
282
CrossRef citations to date
0
Altmetric
Original

Morbidity and quality of life during thermotherapy using magnetic nanoparticles in locally recurrent prostate cancer: Results of a prospective phase I trial

, , , , , , , , & show all
Pages 315-323 | Received 07 Oct 2006, Accepted 16 Dec 2006, Published online: 09 Jul 2009

Keep up to date with the latest research on this topic with citation updates for this article.

Read on this site (28)

Oriano Bottauscio, Irene Rubia-Rodríguez, Alessandro Arduino, Luca Zilberti, Mario Chiampi & Daniel Ortega. (2022) Heating of metallic biliary stents during magnetic hyperthermia of patients with pancreatic ductal adenocarcinoma: an in silico study. International Journal of Hyperthermia 39:1, pages 1222-1232.
Read now
Sri Kamal Kandala, Anirudh Sharma, Sahar Mirpour, Eleni Liapi, Robert Ivkov & Anilchandra Attaluri. (2021) Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 38:1, pages 611-622.
Read now
Irene Rubia-Rodríguez, Luca Zilberti, Alessandro Arduino, Oriano Bottauscio, Mario Chiampi & Daniel Ortega. (2021) In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments. International Journal of Hyperthermia 38:1, pages 846-861.
Read now
Aikaterini-Rafailia Tsiapla, Antonia-Areti Kalimeri, Nikolaos Maniotis, Eirini Myrovali, Theodoros Samaras, Mavroeidis Angelakeris & Orestis Kalogirou. (2021) Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. International Journal of Hyperthermia 38:1, pages 511-522.
Read now
Anilchandra Attaluri, Sri Kamal Kandala, Haoming Zhou, Michele Wabler, Theodore L. DeWeese & Robert Ivkov. (2020) Magnetic nanoparticle hyperthermia for treating locally advanced unresectable and borderline resectable pancreatic cancers: the role of tumor size and eddy-current heating. International Journal of Hyperthermia 37:3, pages 108-119.
Read now
Kayla E. A. Duval, James D. Petryk, Margaret A. Crary-Burney, Eugene Demidenko, Robert J. Wagner & P. Jack Hoopes. (2020) mNP hyperthermia and hypofractionated radiation activate similar immunogenetic and cytotoxic pathways. International Journal of Hyperthermia 37:1, pages 929-937.
Read now
Roberta Gualdani, Andrea Guerrini, Elvira Fantechi, Francesco Tadini-Buoninsegni, Maria Rosa Moncelli & Claudio Sangregorio. (2019) Superparamagnetic iron oxide nanoparticles (SPIONs) modulate hERG ion channel activity. Nanotoxicology 13:9, pages 1197-1209.
Read now
Sri Kamal Kandala, Eleni Liapi, Louis L. Whitcomb, Anilchandra Attaluri & Robert Ivkov. (2019) Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. International Journal of Hyperthermia 36:1, pages 115-129.
Read now
Ankush Sharma, Amit K. Goyal & Goutam Rath. (2018) Recent advances in metal nanoparticles in cancer therapy. Journal of Drug Targeting 26:8, pages 617-632.
Read now
Robert V. Stigliano, Fridon Shubitidze, James D. Petryk, Levan Shoshiashvili, Alicia A. Petryk & P. Jack Hoopes. (2016) Mitigation of eddy current heating during magnetic nanoparticle hyperthermia therapy. International Journal of Hyperthermia 32:7, pages 735-748.
Read now
Mohammad Mahdi Attar & Mohammad Haghpanahi. (2016) Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia. Electromagnetic Biology and Medicine 35:4, pages 305-320.
Read now
Punit Kaur, Maureen L. Aliru, Awalpreet S. Chadha, Alexzander Asea & Sunil Krishnan. (2016) Hyperthermia using nanoparticles – Promises and pitfalls. International Journal of Hyperthermia 32:1, pages 76-88.
Read now
H.M.H.N. Bandara, D. Nguyen, S. Mogarala, M. Osiñski & H.D.C. Smyth. (2015) Magnetic fields suppress Pseudomonas aeruginosa biofilms and enhance ciprofloxacin activity. Biofouling 31:5, pages 443-457.
Read now
Anilchandra Attaluri, Sri Kamal Kandala, Michele Wabler, Haoming Zhou, Christine Cornejo, Michael Armour, Mohammad Hedayati, Yonggang Zhang, Theodore L. DeWeese, Cila Herman & Robert Ivkov. (2015) Magnetic nanoparticle hyperthermia enhances radiation therapy: A study in mouse models of human prostate cancer. International Journal of Hyperthermia 31:4, pages 359-374.
Read now
Christopher J. Rivet, Yuan Yuan, Ryan J. Gilbert & Diana-Andra Borca-Tasciuc. (2014) Effect of magnetic nanoparticle heating on cortical neuron viability. International Journal of Hyperthermia 30:2, pages 79-85.
Read now
Bettina Kozissnik, Ana C. Bohorquez, Jon Dobson & Carlos Rinaldi. (2013) Magnetic fluid hyperthermia: Advances, challenges, and opportunity. International Journal of Hyperthermia 29:8, pages 706-714.
Read now
Irene Andreu & Eva Natividad. (2013) Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. International Journal of Hyperthermia 29:8, pages 739-751.
Read now
Sunil Krishnan, Parmeswaran Diagaradjane & Sang Hyun Cho. (2010) Nanoparticle-mediated thermal therapy: Evolving strategies for prostate cancer therapy. International Journal of Hyperthermia 26:8, pages 775-789.
Read now
Manfred Johannsen, Burghard Thiesen, Peter Wust & Andreas Jordan. (2010) Magnetic nanoparticle hyperthermia for prostate cancer. International Journal of Hyperthermia 26:8, pages 790-795.
Read now
Dewei Jia & Jing Liu. (2010) Current devices for high-performance whole-body hyperthermia therapy. Expert Review of Medical Devices 7:3, pages 407-423.
Read now
Gennaro Bellizzi & Ovidio M. Bucci. (2010) On the optimal choice of the exposure conditions and the nanoparticle features in magnetic nanoparticle hyperthermia. International Journal of Hyperthermia 26:4, pages 389-403.
Read now
Carolina Salvador-Morales, Weiwei Gao, Pooja Ghatalia, Farhan Murshed, Wataru Aizu, Robert Langer & Omid C Farokhzad. (2009) Multifunctional nanoparticles for prostate cancer therapy. Expert Review of Anticancer Therapy 9:2, pages 211-221.
Read now
Pol-Edern Le Renard, Franz Buchegger, Alke Petri-Fink, Frederik Bosman, Daniel Rüfenacht, Heinrich Hofmann, Eric Doelker & Olivier Jordan. (2009) Local moderate magnetically induced hyperthermia using an implant formed in situ in a mouse tumor model. International Journal of Hyperthermia 25:3, pages 229-239.
Read now
Rüdiger Klingeler, Silke Hampel & Bernd Büchner. (2008) Carbon nanotube based biomedical agents for heating, temperature sensoring and drug delivery. International Journal of Hyperthermia 24:6, pages 496-505.
Read now
Burghard Thiesen & Andreas Jordan. (2008) Clinical applications of magnetic nanoparticles for hyperthermia. International Journal of Hyperthermia 24:6, pages 467-474.
Read now
Olav Dahl, Erling Dahl Borkamo & Øystein Fluge. (2008) Current status of antivascular therapy and targeted treatment in the clinic. International Journal of Hyperthermia 24:1, pages 97-110.
Read now

Articles from other publishers (254)

Gopal Niraula, Chengwei Wu, Xiaogang Yu, Sonia Malik, Dalip Singh Verma, Rengpeng Yang, Boxiong Zhao, Shuaiwen Ding, Wei Zhang & Surender Kumar Sharma. (2024) The Curie temperature: a key playmaker in self-regulated temperature hyperthermia. Journal of Materials Chemistry B.
Crossref
Krina Shah, Anand Bhardwaj, Dharti Bhadla, Kinnari Parekh & Neeraj Jain. (2024) Cytotoxicity and uptake analysis of Mn-Zn ferrite-based temperature-sensitive ferrofluid on cervical and bone cancer cells. Journal of Magnetism and Magnetic Materials 589, pages 171534.
Crossref
Lilianne Beola, Nerea Iturrioz-Rodríguez, Carlotta Pucci, Rosalia Bertorelli & Gianni Ciofani. (2023) Drug-Loaded Lipid Magnetic Nanoparticles for Combined Local Hyperthermia and Chemotherapy against Glioblastoma Multiforme. ACS Nano.
Crossref
Amro A. Nour. (2023) Investigating Different Coil Configurations During Magnetic Nanoparticles Hyperthermia for Prostate Cancer. Investigating Different Coil Configurations During Magnetic Nanoparticles Hyperthermia for Prostate Cancer.
Xiaobin Chen, Hancheng Wang, Jiayue Shi, Zhiyong Chen, Yaoben Wang, Siyi Gu, Ye Fu, Jiale Huang, Jiandong Ding & Lin Yu. (2023) An injectable and active hydrogel induces mutually enhanced mild magnetic hyperthermia and ferroptosis. Biomaterials 298, pages 122139.
Crossref
Siyao Wang, Nana Wen, Bin Yan, Xuan Wang, Zhiye Cai, Yao Li & Xiaoli Liu. (2023) Rugby ball-shaped magnetic microcapsule for tumor hyperthermia. RSC Advances 13:20, pages 13886-13891.
Crossref
Yu Sun, Song Yu, Junqiang Liu, Xiang He & Tong Chen. (2023) Facile fabrication of palladium and ruthenium nanoparticles incorporated into core–shell: investigation of proliferation and apoptosis induction in prostate cancer cells. Journal of Nanoparticle Research 25:5.
Crossref
V. Vijayakanth & Krishnamoorthi Chintagumpala. (2022) A review on an effect of dispersant type and medium viscosity on magnetic hyperthermia of nanoparticles. Polymer Bulletin 80:5, pages 4737-4781.
Crossref
Yuanyu Gu, Rafael Piñol, Raquel Moreno-Loshuertos, Carlos D. S. Brites, Justyna Zeler, Abelardo Martínez, Guillaume Maurin-Pasturel, Patricio Fernández-Silva, Joaquín Marco-Brualla, Pedro Téllez, Rafael Cases, Rafael Navarro Belsué, Debora Bonvin, Luís D. Carlos & Angel Millán. (2023) Local Temperature Increments and Induced Cell Death in Intracellular Magnetic Hyperthermia. ACS Nano 17:7, pages 6822-6832.
Crossref
Daniel Rivera, Alexander J. Schupper, Alexandros Bouras, Maria Anastasiadou, Lawrence Kleinberg, Dara L. Kraitchman, Anilchandra Attaluri, Robert Ivkov & Constantinos G. Hadjipanayis. (2023) Neurosurgical Applications of Magnetic Hyperthermia Therapy. Neurosurgery Clinics of North America 34:2, pages 269-283.
Crossref
Mahin Baladi, Mahnaz Amiri & Masoud Salavati-Niasari. (2023) Green sol–gel auto-combustion synthesis, characterization and study of cytotoxicity and anticancer activity of ErFeO3/Fe3O4/rGO nanocomposite. Arabian Journal of Chemistry 16:4, pages 104575.
Crossref
Levan Shoshiashvili, Irma Shamatava, David Kakulia & Fridon Shubitidze. (2023) Design and Assessment of a Novel Biconical Human-Sized Alternating Magnetic Field Coil for MNP Hyperthermia Treatment of Deep-Seated Cancer. Cancers 15:6, pages 1672.
Crossref
Ming Zeng, Zheng Xu, Zhen-Qi Song, Jie-Xiao Li, Zhong-Wen Tang, Sheng Xiao & Jie Wen. (2023) Diagnosis and treatment of chronic osteomyelitis based on nanomaterials. World Journal of Orthopedics 14:2, pages 42-54.
Crossref
Yun Tian, Zhenzhu Liu, Jianbo Wang, Linan Li, Fuli Wang, Zheng Zhu & Xuejian Wang. (2023) Nanomedicine for Combination Urologic Cancer Immunotherapy. Pharmaceutics 15:2, pages 546.
Crossref
Manpreet Singh. (2023) Biological heat and mass transport mechanisms behind nanoparticles migration revealed under microCT image guidance. International Journal of Thermal Sciences 184, pages 107996.
Crossref
Hanan S. Alnahdi, Rasha Mousa Ahmed Mousa & Waleed A. El‐Said. (2022) Development of Organochlorine Pesticide Electrochemical Sensor Based on Fe 3 O 4 Nanoparticles@indium Tin Oxide Electrode . Electroanalysis 35:2.
Crossref
Ziba Hedayatnasab, Ahmad Ramazani Saadatabadi, Hossein Shirgahi & M.R. Mozafari. (2023) Heat induction of iron oxide nanoparticles with rational artificial neural network design-based particle swarm optimization for magnetic cancer hyperthermia. Materials Research Bulletin 157, pages 112035.
Crossref
John Philip. (2023) Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Advances in Colloid and Interface Science 311, pages 102810.
Crossref
Muhammad Suleman. 2023. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment. In Silico Approach Towards Magnetic Fluid Hyperthermia of Cancer Treatment 17 35 .
Antonio Santana-Otero, D. Gómez-Cerezo, C. Lozano-Pedraza, R. López-Méndez, E. Sanz-de Diego, J. Ortega-Juliá, A. Espinosa, F.J. Teran & Daniel Ortega. 2023. Ferrite Nanostructured Magnetic Materials. Ferrite Nanostructured Magnetic Materials 775 803 .
Jie Wang, Hyungsub Kim, HyeongJoo Seo, Satoshi Ota, Chun-Yeol You, Yasushi Takemura & Seongtae Bae. (2022) The role of Co 2+ cation addition in enhancing the AC heat induction power of (Co x Mn 1–x )Fe 2 O 4 superparamagnetic nanoparticles . Nanotechnology 33:48, pages 485701.
Crossref
Li Wu, Chunting Wang & Yu Li. (2022) Iron oxide nanoparticle targeting mechanism and its application in tumor magnetic resonance imaging and therapy. Nanomedicine 17:21, pages 1567-1583.
Crossref
Florestan Vergnaud, Xavier Kesse, Aurélie Jacobs, Francis Perton, Sylvie Begin-Colin, Damien Mertz, Stéphane Descamps, Charlotte Vichery & Jean-Marie Nedelec. (2022) Magnetic bioactive glass nano-heterostructures: a deeper insight into magnetic hyperthermia properties in the scope of bone cancer treatment. Biomaterials Science 10:14, pages 3993-4007.
Crossref
Ruijie Huang, Xingyu Zhou, Guiyuan Chen, Lanhong Su, Zhaoji Liu, Peijie Zhou, Jianping Weng & Yuanzeng Min. (2022) Advances of functional nanomaterials for magnetic resonance imaging and biomedical engineering applications. WIREs Nanomedicine and Nanobiotechnology 14:4.
Crossref
Ejlal Abu-El-Rub, Hana M. Zegallai, Basma Milad Aloud, Saravanan Sekaran & Donald W. Miller. 2022. Bionanotechnology: Next-Generation Therapeutic Tools. Bionanotechnology: Next-Generation Therapeutic Tools 98 129 .
Youngrong Park, Ananiya A. Demessie, Addie Luo, Olena R. Taratula, Abraham S. Moses, Peter Do, Leonardo Campos, Younes Jahangiri, Cory R. Wyatt, Hassan A. Albarqi, Khashayar Farsad, Ov D. Slayden & Oleh Taratula. (2022) Targeted Nanoparticles with High Heating Efficiency for the Treatment of Endometriosis with Systemically Delivered Magnetic Hyperthermia. Small 18:24.
Crossref
Sean Healy, Andris F. Bakuzis, Patrick W. Goodwill, Anilchandra Attaluri, Jeff W. M. Bulte & Robert Ivkov. (2022) Clinical magnetic hyperthermia requires integrated magnetic particle imaging. WIREs Nanomedicine and Nanobiotechnology 14:3.
Crossref
Sai Manogna Kotakadi, Deva Prasad Raju Borelli & John Sushma Nannepaga. (2022) Therapeutic Applications of Magnetotactic Bacteria and Magnetosomes: A Review Emphasizing on the Cancer Treatment. Frontiers in Bioengineering and Biotechnology 10.
Crossref
Shuren Wang, Junjie Xu, Wei Li, Shengnan Sun, Song Gao & Yanglong Hou. (2022) Magnetic Nanostructures: Rational Design and Fabrication Strategies toward Diverse Applications. Chemical Reviews 122:6, pages 5411-5475.
Crossref
Kheireddine El-Boubbou, O. M. Lemine, Rizwan Ali, Sarah M. Huwaizi, Sulaiman Al-Humaid & Abdulmohsen AlKushi. (2022) Evaluating magnetic and thermal effects of various Polymerylated magnetic iron oxide nanoparticles for combined chemo-hyperthermia. New Journal of Chemistry 46:12, pages 5489-5504.
Crossref
Elyahb Allie Kwizera, Samantha Stewart, Md Musavvir Mahmud & Xiaoming He. (2022) Magnetic Nanoparticle-Mediated Heating for Biomedical Applications. Journal of Heat Transfer 144:3.
Crossref
Omid Sedighi, Amirhossein Alaghmandfard, Maziar Montazerian & Francesco Baino. (2021) A critical review of bioceramics for magnetic hyperthermia. Journal of the American Ceramic Society 105:3, pages 1723-1747.
Crossref
Yihan Zhang, Xiao Gao, Bin Yan, Nana Wen, Wee Siang Vincent Lee, Xing‐Jie Liang & Xiaoli Liu. (2021) Enhancement of CD8 + T‐Cell‐Mediated Tumor Immunotherapy via Magnetic Hyperthermia . ChemMedChem 17:2.
Crossref
Xiaoqian Feng, Yinxing Zhu, Fujin Wang, Ting Guo, Xiaofeng Dou, Mei Lin & Weizhong Tian. (2022) The Aptamer Functionalized Nanocomposite Used for Prostate Cancer Diagnosis and Therapy. Journal of Nanomaterials 2022, pages 1-17.
Crossref
Vishakha Dave, Medha Pandya, Rakesh Rawal, S.P. Bhatnagar & Rasbindu Mehta. 2022. Advanced Nanomaterials for Point of Care Diagnosis and Therapy. Advanced Nanomaterials for Point of Care Diagnosis and Therapy 541 564 .
Fahima Dilnawaz & Sanjeeb Kumar Sahoo. 2022. Fundamentals and Industrial Applications of Magnetic Nanoparticles. Fundamentals and Industrial Applications of Magnetic Nanoparticles 393 412 .
Ingrid Hilger. 2022. Magnetic Materials and Technologies for Medical Applications. Magnetic Materials and Technologies for Medical Applications 265 285 .
Nisha Lamichhane, Maneea Eizadi Sharifabad, Ben Hodgson, Tim Mercer & Tapas Sen. 2022. Nanoparticle Therapeutics. Nanoparticle Therapeutics 455 497 .
Goutam K. Jena & Chinam N. Patra. (2021) NANO-BASED THERAPY FOR TREATMENT OF SKIN CARCINOMA. INDIAN DRUGS 58:11, pages 7-17.
Crossref
Hossein Etemadi, Jenna K. Buchanan, Nadia G. Kandile & Paul G. Plieger. (2021) Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomaterials Science & Engineering 7:12, pages 5432-5450.
Crossref
Ji-wook Kim, Dan Heo, Jie Wang, Hyung-sub Kim, Satoshi Ota, Yasushi Takemura, Chulhaeng Huh & Seongtae Bae. (2021) Pseudo-single domain colloidal superparamagnetic nanoparticles designed at a physiologically tolerable AC magnetic field for clinically safe hyperthermia. Nanoscale 13:46, pages 19484-19492.
Crossref
Paula I.P. Soares & João Paulo Borges. (2021) Recent advances in magnetic electrospun nanofibers for cancer theranostics application. Progress in Natural Science: Materials International 31:6, pages 835-844.
Crossref
M. Zubair Sultan, Yasir Jamil, Yasir Javed & Raja Adil Sarfraz. (2021) Synthesis, Characterization, and Study of Thermal Response of Cu-Doped Fe3O4 Nanoparticles. Journal of Superconductivity and Novel Magnetism 34:12, pages 3209-3221.
Crossref
Cristian Iacoviță, Ionel Fizeșan, Stefan Nitica, Adrian Florea, Lucian Barbu-Tudoran, Roxana Dudric, Anca Pop, Nicoleta Vedeanu, Ovidiu Crisan, Romulus Tetean, Felicia Loghin & Constantin Mihai Lucaciu. (2021) Silica Coating of Ferromagnetic Iron Oxide Magnetic Nanoparticles Significantly Enhances Their Hyperthermia Performances for Efficiently Inducing Cancer Cells Death In Vitro. Pharmaceutics 13:12, pages 2026.
Crossref
Ammu V. V. V. Ravi Kiran, Garikapati Kusuma Kumari, Praveen T. Krishnamurthy & Renat R. Khaydarov. (2021) Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomaterials Science 9:23, pages 7667-7704.
Crossref
Amro A. Nour & Fridon Shubitidze. (2021) Effect of Human Conductivity Distributions during Magnetic Nanoparticles Hyperthermia. Effect of Human Conductivity Distributions during Magnetic Nanoparticles Hyperthermia.
Muhammad Suleman, Samia Riaz & Rashid Jalil. (2020) A mathematical modeling approach toward magnetic fluid hyperthermia of cancer and unfolding heating mechanism. Journal of Thermal Analysis and Calorimetry 146:3, pages 1193-1219.
Crossref
Belén Cortés-Llanos, Sandra M. Ocampo, Leonor de la Cueva, Gabriel F. Calvo, Juan Belmonte-Beitia, Lucas Pérez, Gorka Salas & Ángel Ayuso-Sacido. (2021) Influence of Coating and Size of Magnetic Nanoparticles on Cellular Uptake for In Vitro MRI. Nanomaterials 11:11, pages 2888.
Crossref
Nicholas R. Anderson, Jonathon Davidson, Dana R. Louie, David Serantes & Karen L. Livesey. (2021) Simulating the Self-Assembly and Hysteresis Loops of Ferromagnetic Nanoparticles with Sticking of Ligands. Nanomaterials 11:11, pages 2870.
Crossref
Zhi Wei Tay, Prashant Chandrasekharan, Benjamin D. Fellows, Irati Rodrigo Arrizabalaga, Elaine Yu, Malini Olivo & Steven M. Conolly. (2021) Magnetic Particle Imaging: An Emerging Modality with Prospects in Diagnosis, Targeting and Therapy of Cancer. Cancers 13:21, pages 5285.
Crossref
David Egea-Benavente, Jesús G. Ovejero, María del Puerto Morales & Domingo F. Barber. (2021) Understanding MNPs Behaviour in Response to AMF in Biological Milieus and the Effects at the Cellular Level: Implications for a Rational Design That Drives Magnetic Hyperthermia Therapy toward Clinical Implementation. Cancers 13:18, pages 4583.
Crossref
Alexey M. Osintsev, Ilya L. Vasilchenko, Dario B. Rodrigues, Paul R. Stauffer, Vladimir I. Braginsky, Vitaliy V. Rynk, Egor S. Gromov, Alexander Yu. Prosekov, Andrey D. Kaprin & Andrey A. Kostin. (2021) Characterization of Ferromagnetic Composite Implants for Tumor Bed Hyperthermia. IEEE Transactions on Magnetics 57:9, pages 1-8.
Crossref
Manashjit Gogoi. (2021) Magnetic Nanostructures for Cancer Theranostic Applications. Current Pathobiology Reports 9:3, pages 71-78.
Crossref
Manpreet Singh, Ronghui Ma & Liang Zhu. (2021) Quantitative evaluation of effects of coupled temperature elevation, thermal damage, and enlarged porosity on nanoparticle migration in tumors during magnetic nanoparticle hyperthermia. International Communications in Heat and Mass Transfer 126, pages 105393.
Crossref
Gary Hannon, Felista L. Tansi, Ingrid Hilger & Adriele Prina‐Mello. (2021) The Effects of Localized Heat on the Hallmarks of Cancer. Advanced Therapeutics 4:7.
Crossref
Barbara Farkaš & Nora H. de Leeuw. (2021) A Perspective on Modelling Metallic Magnetic Nanoparticles in Biomedicine: From Monometals to Nanoalloys and Ligand-Protected Particles. Materials 14:13, pages 3611.
Crossref
Deanna D. Stueber, Jake Villanova, Itzel Aponte, Zhen Xiao & Vicki L. Colvin. (2021) Magnetic Nanoparticles in Biology and Medicine: Past, Present, and Future Trends. Pharmaceutics 13:7, pages 943.
Crossref
Nicolò Mauro, Mara Andrea Utzeri, Paola Varvarà & Gennara Cavallaro. (2021) Functionalization of Metal and Carbon Nanoparticles with Potential in Cancer Theranostics. Molecules 26:11, pages 3085.
Crossref
Xiaogang Yu, Shuaiwen Ding, Renpeng Yang, Chengwei Wu & Wei Zhang. (2021) Research progress on magnetic nanoparticles for magnetic induction hyperthermia of malignant tumor. Ceramics International 47:5, pages 5909-5917.
Crossref
Alexandros Balousis, Nikolaos Maniotis & Theodoros Samaras. (2021) Improvement of Magnetic Particle Hyperthermia: Healthy Tissues Sparing by Reduction in Eddy Currents. Nanomaterials 11:2, pages 556.
Crossref
Paula I.P. Soares, Joana Romão, Ricardo Matos, Jorge Carvalho Silva & João Paulo Borges. (2021) Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Progress in Materials Science 116, pages 100742.
Crossref
Pascal M. Gschwend, Justin M. Hintze, Inge K. Herrmann, Sotiris E. Pratsinis & Fabian H. L. Starsich. (2021) Precision in Thermal Therapy: Clinical Requirements and Solutions from Nanotechnology. Advanced Therapeutics 4:2.
Crossref
Rahul Shukla, Mayank Handa, Nupur Vasdev, Dhirendra Pratap Singh & Prashant Kesharwani. 2021. Theory and Applications of Nonparenteral Nanomedicines. Theory and Applications of Nonparenteral Nanomedicines 355 382 .
Ruby Varghese, Namitha Vijay & Yogesh Bharat Dalvi. 2021. Magnetic Nanoparticles. Magnetic Nanoparticles 45 71 .
Matteo Avolio, Claudia Innocenti, Alessandro Lascialfari, Manuel Mariani & Claudio Sangregorio. 2021. New Trends in Nanoparticle Magnetism. New Trends in Nanoparticle Magnetism 327 351 .
Yi Fan Zhang, Ga Long Li, Xiao Gao, Huan Zhang, Ting Bin Zhang, Wang Bo Jiao, Xiao Yong Chen, Wen Jing Zhu, Xiao Li Liu & Hai Ming Fan. (2020) Method for Ferrite Nanomaterials-Mediated Cellular Magnetic Hyperthermia. ACS Biomaterials Science & Engineering 6:12, pages 6652-6660.
Crossref
Nicholas Nelson, John Port & Mukesh Pandey. (2020) Use of Superparamagnetic Iron Oxide Nanoparticles (SPIONs) via Multiple Imaging Modalities and Modifications to Reduce Cytotoxicity: An Educational Review. Journal of Nanotheranostics 1:1, pages 105-135.
Crossref
Lilin Wang, Aziliz Hervault, Paul Southern, Olivier Sandre, Franck Couillaud & Nguyen Thi Kim Thanh. (2020) In vitro exploration of the synergistic effect of alternating magnetic field mediated thermo–chemotherapy with doxorubicin loaded dual pH- and thermo-responsive magnetic nanocomposite carriers . Journal of Materials Chemistry B 8:46, pages 10527-10539.
Crossref
Y. Wang, Y. Miao, G. Li, M. Su, X. Chen, H. Zhang, Y. Zhang, W. Jiao, Y. He, J. Yi, X. Liu & H. Fan. (2020) Engineering ferrite nanoparticles with enhanced magnetic response for advanced biomedical applications. Materials Today Advances 8, pages 100119.
Crossref
Kinnari Parekh, Harshida Parmar & Vinay Sharma. (2020) Effect of $$\hbox {Me}^{2+}/\hbox {OH}^{-}$$ ratio in the formation of $$\hbox {Mn}_{0.5}{\hbox {Zn}}_{{0.5}}{\hbox {Fe}}_{{2}}{\hbox {O}}_{{4}}$$ nanoparticles of different sizes and shapes in association with thermomagnetic property. Pramana 94:1.
Crossref
Hossein Etemadi & Paul G. Plieger. (2020) Magnetic Fluid Hyperthermia Based on Magnetic Nanoparticles: Physical Characteristics, Historical Perspective, Clinical Trials, Technological Challenges, and Recent Advances. Advanced Therapeutics 3:11.
Crossref
Hassan A. Albarqi, Ananiya A. Demessie, Fahad Y. Sabei, Abraham S. Moses, Mikkel N. Hansen, Pallavi Dhagat, Olena R. Taratula & Oleh Taratula. (2020) Systemically Delivered Magnetic Hyperthermia for Prostate Cancer Treatment. Pharmaceutics 12:11, pages 1020.
Crossref
Anand Bhardwaj, Kinnari Parekh & Neeraj Jain. (2020) In vitro hyperthermic effect of magnetic fluid on cervical and breast cancer cells. Scientific Reports 10:1.
Crossref
Muhammad Nauman, Muhammad Hisham Alnasir, Muhammad Asif Hamayun, YiXu Wang, Michael Shatruk & Sadia Manzoor. (2020) Size-dependent magnetic and magnetothermal properties of gadolinium silicide nanoparticles. RSC Advances 10:47, pages 28383-28389.
Crossref
Izaz Raouf, Salman Khalid, Asif Khan, Jaehun Lee, Heung Soo Kim & Min-Ho Kim. (2020) A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. Journal of Thermal Biology 91, pages 102644.
Crossref
Zhi Wei Lim, Vijaykumar B. Varma, Raju V. Ramanujan & Ali Miserez. (2020) Magnetically responsive peptide coacervates for dual hyperthermia and chemotherapy treatments of liver cancer. Acta Biomaterialia 110, pages 221-230.
Crossref
R K Chandunika, R Vijayaraghavan & Niroj Kumar Sahu. (2020) Magnetic hyperthermia application of MnFe 2 O 4 nanostructures processed through solvents with the varying boiling point . Materials Research Express 7:6, pages 064002.
Crossref
I. Garrido, S. Lagüela, J.V. Román, E.M. Martín-del Valle & D. González-Aguilera. (2020) Computation of thermophysical properties for magnetite-based hyperthermia treatment simulations using infrared thermography. International Journal of Heat and Mass Transfer 154, pages 119770.
Crossref
Kinnari Parekh, Anand Bhardwaj & Neeraj Jain. (2020) Preliminary in-vitro investigation of magnetic fluid hyperthermia in cervical cancer cells. Journal of Magnetism and Magnetic Materials 497, pages 166057.
Crossref
Sekhar Talluri & Rama R. Malla. (2020) Superparamagnetic Iron Oxide Nanoparticles (SPIONs) for Diagnosis and Treatment of Breast, Ovarian and Cervical Cancers. Current Drug Metabolism 20:12, pages 942-945.
Crossref
Mohammad Norouzi, Mehrnaz Amerian, Mahshid Amerian & Fatemeh Atyabi. (2020) Clinical applications of nanomedicine in cancer therapy. Drug Discovery Today 25:1, pages 107-125.
Crossref
Frederik Soetaert, Preethi Korangath, David Serantes, Steven Fiering & Robert Ivkov. (2020) Cancer therapy with iron oxide nanoparticles: Agents of thermal and immune therapies. Advanced Drug Delivery Reviews 163-164, pages 65-83.
Crossref
Shehaab Savliwala, Andreina Chiu-Lam, Mythreyi Unni, Angelie Rivera-Rodriguez, Eric Fuller, Kacoli Sen, Marcus Threadcraft & Carlos Rinaldi. 2020. Nanoparticles for Biomedical Applications. Nanoparticles for Biomedical Applications 195 221 .
Giorgio Zoppellaro. 2020. Magnetic Nanoheterostructures. Magnetic Nanoheterostructures 57 102 .
Jyoti Ahlawat, Ritu Hooda, Minakshi Sharma, Vijay Kalra, J. S. Rana & Bhawna Batra. 2020. Green Nanoparticles. Green Nanoparticles 227 250 .
Debalina Bhattacharya, Rituparna Saha & Mainak Mukhopadhyay. 2020. Nanotechnology in Skin, Soft Tissue, and Bone Infections. Nanotechnology in Skin, Soft Tissue, and Bone Infections 49 69 .
Andreea-Roxana Lupu, Traian Popescu & Marko Stojanović. 2020. Environmental Nanotechnology Volume 3. Environmental Nanotechnology Volume 3 47 87 .
Jérémy Vuilleumier, Geoffrey Gaulier, Raphaël De Matos, Yannick Mugnier, Gabriel Campargue, Jean‐Pierre Wolf, Luigi Bonacina & Sandrine Gerber‐Lemaire. (2020) Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. Helvetica Chimica Acta 103:1.
Crossref
Kuo-Chi Liu & Po-Jen Cheng. (2019) Numerical analysis of power dissipation requirement in magnetic hyperthermia problems. Journal of Thermal Biology 86, pages 102430.
Crossref
Julia V. Nuzhina, Alexander A. Shtil, Artur Y. Prilepskii & Vladimir V. Vinogradov. (2019) Preclinical Evaluation and Clinical Translation of Magnetite-Based Nanomedicines. Journal of Drug Delivery Science and Technology 54, pages 101282.
Crossref
Xiaoli Liu, Jianjun Zheng, Wei Sun, Xiao Zhao, Yao Li, Ningqiang Gong, Yanyun Wang, Xiaowei Ma, Tingbin Zhang, Ling-Yun Zhao, Yayi Hou, Zhibing Wu, Yang Du, Haiming Fan, Jie Tian & Xing-Jie Liang. (2019) Ferrimagnetic Vortex Nanoring-Mediated Mild Magnetic Hyperthermia Imparts Potent Immunological Effect for Treating Cancer Metastasis. ACS Nano 13:8, pages 8811-8825.
Crossref
Zhannat Ashikbayeva, Daniele Tosi, Damir Balmassov, Emiliano Schena, Paola Saccomandi & Vassilis Inglezakis. (2019) Application of Nanoparticles and Nanomaterials in Thermal Ablation Therapy of Cancer. Nanomaterials 9:9, pages 1195.
Crossref
Xiyou Cui. (2019) Self-thermoregulating Ferromagnetic FeNi filled Carbon Nanotubes for Magnetic Hyperthermia Cancer Therapy. IOP Conference Series: Earth and Environmental Science 310:4, pages 042016.
Crossref
Hassan A. Albarqi, Leon H. Wong, Canan Schumann, Fahad Y. Sabei, Tetiana Korzun, Xiaoning Li, Mikkel N. Hansen, Pallavi Dhagat, Abraham S. Moses, Olena Taratula & Oleh Taratula. (2019) Biocompatible Nanoclusters with High Heating Efficiency for Systemically Delivered Magnetic Hyperthermia. ACS Nano 13:6, pages 6383-6395.
Crossref
L. Balejcikova, M. Molcan, J. Kovac, M. Kubovcikova, K. Saksl, Z. Mitroova, M. Timko & P. Kopcansky. (2019) Hyperthermic effect in magnetoferritin aqueous colloidal solution. Journal of Molecular Liquids 283, pages 39-44.
Crossref
Mihail Iacob, Carmen Racles, Mihaela Dascalu, Codrin Tugui, Vasile Lozan & Maria Cazacu. (2019) Nanomaterials Developed by Processing Iron Coordination Compounds for Biomedical Application. Journal of Nanomaterials 2019, pages 1-14.
Crossref
. 2019. Magnetic Nanoparticles in Biosensing and Medicine. Magnetic Nanoparticles in Biosensing and Medicine 91 150 .
Raquel Mejías, Patricia Hernández Flores, Marina Talelli, José L. Tajada-Herráiz, María E.F. Brollo, Yadileiny Portilla, María P. Morales & Domingo F. Barber. (2018) Cell-Promoted Nanoparticle Aggregation Decreases Nanoparticle-Induced Hyperthermia under an Alternating Magnetic Field Independently of Nanoparticle Coating, Core Size, and Subcellular Localization. ACS Applied Materials & Interfaces 11:1, pages 340-355.
Crossref
Sheikh Mohamed M.Srivani Veeranarayanan, Toru Maekawa & Sakthi Kumar D.. (2019) External stimulus responsive inorganic nanomaterials for cancer theranostics. Advanced Drug Delivery Reviews 138, pages 18-40.
Crossref
Sunita Chawla, Muktika Tekade, Rahul Maheshwari, Yashu Chourasiya, Gillian A. Hutcheon & Rakesh K. Tekade. 2019. Biomaterials and Bionanotechnology. Biomaterials and Bionanotechnology 19 56 .
Rafael Piñol, Carlos D.S. Brites, Nuno J. Silva, Luis D. Carlos & Angel Millán. 2019. Nanomaterials for Magnetic and Optical Hyperthermia Applications. Nanomaterials for Magnetic and Optical Hyperthermia Applications 139 172 .
Kheireddine El-Boubbou. 2019. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy. Nanotechnology Characterization Tools for Tissue Engineering and Medical Therapy 241 297 .
Preeti, Mahaveer Genwa & Pradeep Kumar. (2018) Implications of Nanotechnology in Healthcare. Nanoscience &Nanotechnology-Asia 9:1, pages 44-57.
Crossref
Fabian H. L. Starsich, Christian Eberhardt, Andreas Boss, Ann M. Hirt & Sotiris E. Pratsinis. (2018) Coercivity Determines Magnetic Particle Heating. Advanced Healthcare Materials 7:19.
Crossref
P. Jack Hoopes, Robert J. Wagner, Kayla Duval, Kevin Kang, David J. Gladstone, Karen L Moodie, Margaret Crary-Burney, Hugo Ariaspulido, Frank A. Veliz, Nicole F. Steinmetz & Steven N. Fiering. (2018) Treatment of Canine Oral Melanoma with Nanotechnology-Based Immunotherapy and Radiation. Molecular Pharmaceutics 15:9, pages 3717-3722.
Crossref
Marziyeh Fathi, Sima Majidi, Parham Sahandi Zangabad, Jaleh Barar, Hamid Erfan-Niya & Yadollah Omidi. (2018) Chitosan-based multifunctional nanomedicines and theranostics for targeted therapy of cancer. Medicinal Research Reviews 38:6, pages 2110-2136.
Crossref
Lauren E. Woodard, Cindi L. Dennis, Julie A. Borchers, Anilchandra Attaluri, Esteban Velarde, Charlene Dawidczyk, Peter C. Searson, Martin G. Pomper & Robert Ivkov. (2018) Nanoparticle architecture preserves magnetic properties during coating to enable robust multi-modal functionality. Scientific Reports 8:1.
Crossref
Omer Aras, Gillian Pearce, Adam J. Watkins, Fuad Nurili, Emin Ilker Medine, Ozge Kozgus Guldu, Volkan Tekin, Julian Wong, Xianghong Ma, Richard Ting, Perihan Unak & Oguz Akin. (2018) An in-vivo pilot study into the effects of FDG-mNP in cancer in mice. PLOS ONE 13:8, pages e0202482.
Crossref
David Chang, May Lim, Jeroen A. C. M. Goos, Ruirui Qiao, Yun Yee Ng, Friederike M. Mansfeld, Michael Jackson, Thomas P. Davis & Maria Kavallaris. (2018) Biologically Targeted Magnetic Hyperthermia: Potential and Limitations. Frontiers in Pharmacology 9.
Crossref
W. A. El-Said, D. M. Fouad, M. H. Ali & M. A. El-Gahami. (2017) Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides. International Journal of Environmental Science and Technology 15:8, pages 1731-1744.
Crossref
Ming-Hui He, Li Chen, Ting Zheng, Yu Tu, Qian He, Hua-Lin Fu, Ju-Chun Lin, Wei Zhang, Gang Shu, Lili He & Zhi-Xiang Yuan. (2018) Potential Applications of Nanotechnology in Urological Cancer. Frontiers in Pharmacology 9.
Crossref
Hyeon-Gun Jee, Hyun Seung Ban, Jung Hee Lee, Sang Hun Lee, Oh Seok Kwon & Jun Ho Choe. (2018) Thermotherapy for Na+/I− symporter-expressing cancer using anti-Na+/I− symporter antibody-conjugated magnetite nanoparticles. Journal of Industrial and Engineering Chemistry 63, pages 359-365.
Crossref
Kheireddine El-Boubbou. (2018) Magnetic iron oxide nanoparticles as drug carriers: clinical relevance. Nanomedicine 13:8, pages 953-971.
Crossref
Huan Zhang, Xiao Li Liu, Yi Fan Zhang, Fei Gao, Ga Long Li, Yuan He, Ming Li Peng & Hai Ming Fan. (2018) Magnetic nanoparticles based cancer therapy: current status and applications. Science China Life Sciences 61:4, pages 400-414.
Crossref
G. Iglesias, Felisa Reyes-Ortega, B. Checa Fernandez & Ángel Delgado. (2018) Hyperthermia-Triggered Gemcitabine Release from Polymer-Coated Magnetite Nanoparticles. Polymers 10:3, pages 269.
Crossref
Kinnari Parekh, Harshida Parmar, Vinay Sharma & R. V. Ramanujan. Heating efficiency dependency on size and morphology of magnetite nanoparticles. Heating efficiency dependency on size and morphology of magnetite nanoparticles.
Saini Setua, Meena Jaggi, Murali M. Yallapu, Subhash C. Chauhan, Anna Danilushkina, Hojae Lee, Insung S. Choi, Rawil Fakhrullin, Lorenzo Degli Esposti, Anna Tampieri, Michele Iafisco, Maxim Shevtsov & Gabriele Multhoff. 2018. Nanotechnologies in Preventive and Regenerative Medicine. Nanotechnologies in Preventive and Regenerative Medicine 399 511 .
Xindong Wang, Hui Li & Guanying Chen. 2018. Core-Shell Nanostructures for Drug Delivery and Theranostics. Core-Shell Nanostructures for Drug Delivery and Theranostics 143 175 .
C. Blanco-Andujar, F.J. Teran & D. Ortega. 2018. Iron Oxide Nanoparticles for Biomedical Applications. Iron Oxide Nanoparticles for Biomedical Applications 197 245 .
Hong Su, Yafei Wang, Yuanliang Gu, Linda Bowman, Jinshun Zhao & Min Ding. (2018) Potential applications and human biosafety of nanomaterials used in nanomedicine. Journal of Applied Toxicology 38:1, pages 3-24.
Crossref
Suriyanto, E. Y. K. Ng & S. D. Kumar. (2017) Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. BioMedical Engineering OnLine 16:1.
Crossref
Chih-Hsiang Fang, Pei-I Tsai, Shu-Wei Huang, Jui-Sheng Sun, Jenny Zwei-Chieng Chang, Hsin-Hsin Shen, San-Yuan Chen, Feng Huei Lin, Lih-Tao Hsu & Yen-Chun Chen. (2017) Magnetic hyperthermia enhance the treatment efficacy of peri-implant osteomyelitis. BMC Infectious Diseases 17:1.
Crossref
Zuoheng Zhang, Xubo Lin & Ning Gu. (2017) Effects of temperature and PEG grafting density on the translocation of PEGylated nanoparticles across asymmetric lipid membrane. Colloids and Surfaces B: Biointerfaces 160, pages 92-100.
Crossref
Julian (Jialiang) Wang & Donglu Shi. (2017) Spectral selective and photothermal nano structured thin films for energy efficient windows. Applied Energy 208, pages 83-96.
Crossref
Jalal Mosayebi, Mehdi Kiyasatfar & Sophie Laurent. (2017) Synthesis, Functionalization, and Design of Magnetic Nanoparticles for Theranostic Applications. Advanced Healthcare Materials 6:23, pages 1700306.
Crossref
Agostina Grillone & Gianni Ciofani. (2017) Magnetic Nanotransducers in Biomedicine. Chemistry – A European Journal 23:64, pages 16109-16114.
Crossref
Daishun Ling & Taeghwan Hyeon. 2017. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications. Magnetic Nanomaterials - Fundamentals, Synthesis and Applications 393 438 .
Chrysafis Andreou, Suchetan Pal, Lara Rotter, Jiang Yang & Moritz F. Kircher. (2017) Molecular Imaging in Nanotechnology and Theranostics. Molecular Imaging and Biology 19:3, pages 363-372.
Crossref
Ayesha Sohail, Zaki Ahmad, O. Anwar Bég, Sarmad Arshad & Lubna Sherin. (2017) A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer 104:5, pages 452-461.
Crossref
Amin ur Rashid, Asif Humayun & Sadia Manzoor. (2017) MgFe2O4/ZrO2 composite nanoparticles for hyperthermia applications. Journal of Magnetism and Magnetic Materials 428, pages 333-339.
Crossref
Faiz Ul Amin, Ali Kafash Hoshiar, Ton Duc Do, Yeongil Noh, Shahid Ali Shah, Muhammad Sohail Khan, Jungwon Yoon & Myeong Ok Kim. (2017) Osmotin-loaded magnetic nanoparticles with electromagnetic guidance for the treatment of Alzheimer's disease. Nanoscale 9:30, pages 10619-10632.
Crossref
Manashjit Gogoi, Manish K. Jaiswal, Haladhar Dev Sarma, Dhirendra Bahadur & Rinti Banerjee. (2017) Biocompatibility and therapeutic evaluation of magnetic liposomes designed for self-controlled cancer hyperthermia and chemotherapy. Integrative Biology 9:6, pages 555-565.
Crossref
Pallabi Sutradhar, Vikas Chauhan, Shiv N. Khanna & Jayasimha Atulasimha. (2017) Magnetic behavior of superatomic-fullerene assemblies. Physical Chemistry Chemical Physics 19:2, pages 996-1002.
Crossref
Balasubramanian Sivakumar, Ravindran Girija Aswathy, Rebeca Romero-Aburto, Trevor Mitcham, Keith A. Mitchel, Yutaka Nagaoka, Richard R. Bouchard, Pulickel M. Ajayan, Toru Maekawa & Dasappan Nair Sakthikumar. (2017) Highly versatile SPION encapsulated PLGA nanoparticles as photothermal ablators of cancer cells and as multimodal imaging agents. Biomaterials Science 5:3, pages 432-443.
Crossref
Maria Margarida Cruz, Liliana P. Ferreira, André F. Alves, Sofia G. Mendo, Paula Ferreira, Margarida Godinho & Maria Deus Carvalho. 2017. Nanostructures for Cancer Therapy. Nanostructures for Cancer Therapy 485 511 .
L. Gutiérrez, G. Stepien, L. Gutiérrez, M. Pérez-Hernández, J. Pardo, J. Pardo, V. Grazú & J.M. de la Fuente. 2017. Comprehensive Medicinal Chemistry III. Comprehensive Medicinal Chemistry III 264 295 .
Costica Caizer. 2017. Metal Nanoparticles in Pharma. Metal Nanoparticles in Pharma 193 218 .
Joseph M. Caster, Artish N. Patel, Tian Zhang & Andrew Wang. (2016) Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. WIREs Nanomedicine and Nanobiotechnology 9:1.
Crossref
N.R. Datta, S. Krishnan, D.E. Speiser, E. Neufeld, N. Kuster, S. Bodis & H. Hofmann. (2016) Magnetic nanoparticle-induced hyperthermia with appropriate payloads: Paul Ehrlich’s “magic (nano)bullet” for cancer theranostics?. Cancer Treatment Reviews 50, pages 217-227.
Crossref
B. Palazzo, B. Palazzo, S. Scialla, F. Scalera, N. Margiotta & F. Gervaso. 2016. Advanced Composite Materials. Advanced Composite Materials 209 273 .
Karel Ulbrich, Kateřina Holá, Vladimir Šubr, Aristides Bakandritsos, Jiří Tuček & Radek Zbořil. (2016) Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chemical Reviews 116:9, pages 5338-5431.
Crossref
Richard A. Revia & Miqin Zhang. (2016) Magnetite nanoparticles for cancer diagnosis, treatment, and treatment monitoring: recent advances. Materials Today 19:3, pages 157-168.
Crossref
Emily B. Ehlerding, Feng Chen & Weibo Cai. (2016) Biodegradable and Renal Clearable Inorganic Nanoparticles. Advanced Science 3:2, pages 1500223.
Crossref
Ahmed A. El-Gendy, Silke Hampel, Bernd Büchner & Rüdiger Klingeler. (2016) Tuneable magnetic properties of carbon-shielded NiPt-nanoalloys. RSC Advances 6:57, pages 52427-52433.
Crossref
Takeshi Kobayashi, Akira Ito & Hiroyuki Honda. 2016. Hyperthermic Oncology from Bench to Bedside. Hyperthermic Oncology from Bench to Bedside 137 150 .
Anastasia K. Hauser, Robert J. Wydra, Nathanael A. Stocke, Kimberly W. Anderson & J. Zach Hilt. (2015) Magnetic nanoparticles and nanocomposites for remote controlled therapies. Journal of Controlled Release 219, pages 76-94.
Crossref
Yuanzeng Min, Joseph M. Caster, Michael J. Eblan & Andrew Z. Wang. (2015) Clinical Translation of Nanomedicine. Chemical Reviews 115:19, pages 11147-11190.
Crossref
Kye S Kim, Dongwon Lee, Chul Gyu Song & Peter M Kang. (2015) Reactive oxygen species-activated nanomaterials as theranostic agents. Nanomedicine 10:17, pages 2709-2723.
Crossref
Kotaro Oyama, Tomomi Arai, Akira Isaka, Taku Sekiguchi, Hideki Itoh, Yusuke Seto, Makito Miyazaki, Takeshi Itabashi, Takashi Ohki, Madoka Suzuki & Shin'ichi Ishiwata. (2015) Directional Bleb Formation in Spherical Cells under Temperature Gradient. Biophysical Journal 109:2, pages 355-364.
Crossref
Caterina Soldano. (2015) Hybrid metal-based carbon nanotubes: Novel platform for multifunctional applications. Progress in Materials Science 69, pages 183-212.
Crossref
Bronislav E. Kashevsky, Sergey B. Kashevsky, Victor S. Korenkov, Yuri P. Istomin, Tatyana I. Terpinskaya & Vladimir S. Ulashchik. (2015) Magnetic hyperthermia with hard-magnetic nanoparticles. Journal of Magnetism and Magnetic Materials 380, pages 335-340.
Crossref
Fridon Shubitidze, Katsiaryna Kekalo, Robert Stigliano & Ian Baker. (2015) Magnetic nanoparticles with high specific absorption rate of electromagnetic energy at low field strength for hyperthermia therapy. Journal of Applied Physics 117:9.
Crossref
Sıtkı Aktaş, Stuart C Thornton, Chris Binns, Leonardo Lari, Andrew Pratt, Roland Kröger & Mark A Horsfield. (2015) Control of gas phase nanoparticle shape and its effect on MRI relaxivity. Materials Research Express 2:3, pages 035002.
Crossref
Anja Ostrowski, Daniel Nordmeyer, Alexander Boreham, Cornelia Holzhausen, Lars Mundhenk, Christina Graf, Martina C Meinke, Annika Vogt, Sabrina Hadam, Jürgen Lademann, Eckart Rühl, Ulrike Alexiev & Achim D Gruber. (2015) Overview about the localization of nanoparticles in tissue and cellular context by different imaging techniques. Beilstein Journal of Nanotechnology 6, pages 263-280.
Crossref
露茜 尹. (2015) Advances in Animal Experiment and Clinical Research of Magnetic Induction Hyperthermia for Malignant Tumor. World Journal of Cancer Research 05:04, pages 59-64.
Crossref
Bennett E. Smith, Paden B. Roder, Xuezhe Zhou & Peter J. Pauzauskie. (2015) Nanoscale materials for hyperthermal theranostics. Nanoscale 7:16, pages 7115-7126.
Crossref
Robert J. G. Johnson, Kaitlin M. Haas & Benjamin J. Lear. (2015) Fe 3 O 4 nanoparticles as robust photothermal agents for driving high barrier reactions under ambient conditions . Chemical Communications 51:2, pages 417-420.
Crossref
Shun Shen, Sheng Wang, Rui Zheng, Xiaoyan Zhu, Xinguo Jiang, Deliang Fu & Wuli Yang. (2015) Magnetic nanoparticle clusters for photothermal therapy with near-infrared irradiation. Biomaterials 39, pages 67-74.
Crossref
Nicholas J. Schaub, Deniz Rende, Yuan Yuan, Ryan J. Gilbert & Diana-Andra Borca-Tasciuc. (2014) Reduced Astrocyte Viability at Physiological Temperatures from Magnetically Activated Iron Oxide Nanoparticles. Chemical Research in Toxicology 27:12, pages 2023-2035.
Crossref
Silvio Dutz & Rudolf Hergt. (2014) Magnetic particle hyperthermia—a promising tumour therapy?. Nanotechnology 25:45, pages 452001.
Crossref
Heba Bassiony, Salwa Sabet, Taher A. Salah El-Din, Mona M. Mohamed & Akmal A. El-Ghor. (2014) Magnetite Nanoparticles Inhibit Tumor Growth and Upregulate the Expression of P53/P16 in Ehrlich Solid Carcinoma Bearing Mice. PLoS ONE 9:11, pages e111960.
Crossref
Eric Brown. 2014. Horizons in Clinical Nanomedicine. Horizons in Clinical Nanomedicine 67 91 .
Thi Thu Trang Mai, Thi Hong Phong Le, Hong Nam Pham, Hung Manh Do & Xuan Phuc Nguyen. (2014) Synthesis and magnetic heating characteristics of thermoresponsive poly (N-isopropylacrylamide-co-acrylic acid)/nano Fe 3 O 4 nanparticles . Advances in Natural Sciences: Nanoscience and Nanotechnology 5:4, pages 045007.
Crossref
Takeshi Kobayashi, Kazuhiro Kakimi, Eiichi Nakayama & Kowichi Jimbow. (2014) Antitumor immunity by magnetic nanoparticle-mediated hyperthermia. Nanomedicine 9:11, pages 1715-1726.
Crossref
Xia Wu, Feng Zhang, Ran Chen, Weiliang Zheng & Xiaoming Yang. (2014) Recent advances in imaging-guided interventions for prostate cancers. Cancer Letters 349:2, pages 114-119.
Crossref
Michael D. Nieskoski & B. Stuart Trembly. (2014) Comparison of a Single Optimized Coil and a Helmholtz Pair for Magnetic Nanoparticle Hyperthermia. IEEE Transactions on Biomedical Engineering 61:6, pages 1642-1650.
Crossref
Steven L. Saville, Bin Qi, Jonathon Baker, Roland Stone, Robert E. Camley, Karen L. Livesey, Longfei Ye, Thomas M. Crawford & O. Thompson Mefford. (2014) The formation of linear aggregates in magnetic hyperthermia: Implications on specific absorption rate and magnetic anisotropy. Journal of Colloid and Interface Science 424, pages 141-151.
Crossref
Elvira Fantechi, Claudia Innocenti, Matteo Zanardelli, Maria Fittipaldi, Elisabetta Falvo, Miriam Carbo, Valbona Shullani, Lorenzo Di Cesare Mannelli, Carla Ghelardini, Anna Maria Ferretti, Alessandro Ponti, Claudio Sangregorio & Pierpaolo Ceci. (2014) A Smart Platform for Hyperthermia Application in Cancer Treatment: Cobalt-Doped Ferrite Nanoparticles Mineralized in Human Ferritin Cages. ACS Nano 8:5, pages 4705-4719.
Crossref
Leisha M. Armijo, Michael Kopciuch, Zuzia Olszόwka, Stephen J. Wawrzyniec, Antonio C. Rivera, John B. Plumley, Nathaniel C. Cook, Yekaterina I. Brandt, Dale L. Huber, Gennady A. Smolyakov, Natalie L. Adolphi, Hugh D. C. Smyth & Marek Osiński. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy.
Ahmed A. El-Gendy, Meichun Qian, Zachary J. Huba, Shiv N. Khanna & Everett E. Carpenter. (2014) Enhanced magnetic anisotropy in cobalt-carbide nanoparticles. Applied Physics Letters 104:2, pages 023111.
Crossref
Stanley E. GillilandIIIIII, Everett E. Carpenter & Michael D. Shultz. (2014) Modified Seed Growth of Iron Oxide Nanoparticles in Benzyl Alcohol — Optimization for Heating and Broad Stability in Biomedical Applications. Nanobiomedicine 1, pages 9.
Crossref
Aitziber L. Cortajarena, Daniel Ortega, Sandra M. Ocampo, Alberto Gonzalez-García, Pierre Couleaud, Rodolfo Miranda, Cristobal Belda-Iniesta & Angel Ayuso-Sacido. (2014) Engineering Iron Oxide Nanoparticles for Clinical Settings. Nanobiomedicine 1, pages 2.
Crossref

Displaying 200 of 282 citing articles. Use the download link below to view the full list of citing articles.

Download full citations list

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.